Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Nov 1;135(3):701–709. doi: 10.1083/jcb.135.3.701

Delivery of newly synthesized tubulin to rapidly growing distal axons of sympathetic neurons in compartmented cultures

PMCID: PMC2121067  PMID: 8909544

Abstract

Growing axons receive a substantial supply of tubulin and other proteins delivered from sites of synthesis in the cell body by slow axonal transport. To investigate the mechanism of tubulin transport most previous studies have used in vitro models in which the transport of microtubules can be visualized during brief periods of growth. To investigate total tubulin transport in neurons displaying substantial growth over longer periods, we used rat sympathetic neurons in compartmented cultures. Tubulin synthesized during pulses of [35S]methionine was separated from other proteins by immunoprecipitation with monoclonal antibodies to alpha and beta tubulin, further separated on SDS-PAGE, and quantified by phosphorimaging. Results showed that 90% of newly synthesized tubulin moved into the distal axons within 2 d. Furthermore, the leading edge of tubulin was transported at a velocity faster than 4 mm/d, more than four times the rate of axon elongation. This velocity did not diminish with distance from the cell body, suggesting that the transport system is capable of distributing newly synthesized tubulin to growth cones throughout the axonal tree. Neither diffusion nor the an mass transport of axonal microtubules can account for the velocity and magnitude of tubulin transport that was observed. Thus, it is likely that most of the newly synthesized tubulin was supplied to the growing axonal tree in subunit form such as a heterodimer or an oligomer considerably smaller than a microtubule.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baas P. W., Ahmad F. J. The transport properties of axonal microtubules establish their polarity orientation. J Cell Biol. 1993 Mar;120(6):1427–1437. doi: 10.1083/jcb.120.6.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baas P. W., Black M. M. Individual microtubules in the axon consist of domains that differ in both composition and stability. J Cell Biol. 1990 Aug;111(2):495–509. doi: 10.1083/jcb.111.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Black M. M., Keyser P., Sobel E. Interval between the synthesis and assembly of cytoskeletal proteins in cultured neurons. J Neurosci. 1986 Apr;6(4):1004–1012. doi: 10.1523/JNEUROSCI.06-04-01004.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Black M. M., Lasek R. J. Slow components of axonal transport: two cytoskeletal networks. J Cell Biol. 1980 Aug;86(2):616–623. doi: 10.1083/jcb.86.2.616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Campenot R. B. Development of sympathetic neurons in compartmentalized cultures. II. Local control of neurite survival by nerve growth factor. Dev Biol. 1982 Sep;93(1):13–21. doi: 10.1016/0012-1606(82)90233-0. [DOI] [PubMed] [Google Scholar]
  6. Campenot R. B. Development of sympathetic neurons in compartmentalized cultures. Il Local control of neurite growth by nerve growth factor. Dev Biol. 1982 Sep;93(1):1–12. doi: 10.1016/0012-1606(82)90232-9. [DOI] [PubMed] [Google Scholar]
  7. Campenot R. B. Local control of neurite sprouting in cultured sympathetic neurons by nerve growth factor. Brain Res. 1987 Dec 15;465(1-2):293–301. doi: 10.1016/0165-3806(87)90250-1. [DOI] [PubMed] [Google Scholar]
  8. Campenot R. B., Walji A. H., Draker D. D. Effects of sphingosine, staurosporine, and phorbol ester on neurites of rat sympathetic neurons growing in compartmented cultures. J Neurosci. 1991 Apr;11(4):1126–1139. doi: 10.1523/JNEUROSCI.11-04-01126.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Funakoshi T., Takeda S., Hirokawa N. Active transport of photoactivated tubulin molecules in growing axons revealed by a new electron microscopic analysis. J Cell Biol. 1996 Jun;133(6):1347–1353. doi: 10.1083/jcb.133.6.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hawrot E., Patterson P. H. Long-term culture of dissociated sympathetic neurons. Methods Enzymol. 1979;58:574–584. doi: 10.1016/s0076-6879(79)58174-9. [DOI] [PubMed] [Google Scholar]
  11. Hoffman P. N., Lasek R. J. Axonal transport of the cytoskeleton in regenerating motor neurons: constancy and change. Brain Res. 1980 Dec 8;202(2):317–333. doi: 10.1016/0006-8993(80)90144-4. [DOI] [PubMed] [Google Scholar]
  12. Hoffman P. N., Lasek R. J. The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J Cell Biol. 1975 Aug;66(2):351–366. doi: 10.1083/jcb.66.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. James K. A., Austin L. The binding in vitro of colchicine to axoplasmic proteins from chicken sciatic nerve. Biochem J. 1970 May;117(4):773–777. doi: 10.1042/bj1170773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Karlsson J. O., Sjöstrand J. Transport of microtubular protein in axons of retinal ganglion cells. J Neurochem. 1971 Jun;18(6):975–982. doi: 10.1111/j.1471-4159.1971.tb12027.x. [DOI] [PubMed] [Google Scholar]
  15. Keith C. H., Farmer M. A. Microtubule behavior in PC12 neurites: variable results obtained with photobleach technology. Cell Motil Cytoskeleton. 1993;25(4):345–357. doi: 10.1002/cm.970250405. [DOI] [PubMed] [Google Scholar]
  16. Keith C. H. Slow transport of tubulin in the neurites of differentiated PC12 cells. Science. 1987 Jan 16;235(4786):337–339. doi: 10.1126/science.2432662. [DOI] [PubMed] [Google Scholar]
  17. Li Y., Black M. M. Microtubule assembly and turnover in growing axons. J Neurosci. 1996 Jan 15;16(2):531–544. doi: 10.1523/JNEUROSCI.16-02-00531.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lim S. S., Edson K. J., Letourneau P. C., Borisy G. G. A test of microtubule translocation during neurite elongation. J Cell Biol. 1990 Jul;111(1):123–130. doi: 10.1083/jcb.111.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lim S. S., Sammak P. J., Borisy G. G. Progressive and spatially differentiated stability of microtubules in developing neuronal cells. J Cell Biol. 1989 Jul;109(1):253–263. doi: 10.1083/jcb.109.1.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McEwen B. S., Forman D. S., Grafstein B. Components of fast and slow axonal transport in the goldfish optic nerve. J Neurobiol. 1971;2(4):361–377. doi: 10.1002/neu.480020408. [DOI] [PubMed] [Google Scholar]
  21. McQuarrie I. G., Brady S. T., Lasek R. J. Diversity in the axonal transport of structural proteins: major differences between optic and spinal axons in the rat. J Neurosci. 1986 Jun;6(6):1593–1605. doi: 10.1523/JNEUROSCI.06-06-01593.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Miller K. E., Joshi H. C. Tubulin transport in neurons. J Cell Biol. 1996 Jun;133(6):1355–1366. doi: 10.1083/jcb.133.6.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Okabe S., Hirokawa N. Differential behavior of photoactivated microtubules in growing axons of mouse and frog neurons. J Cell Biol. 1992 Apr;117(1):105–120. doi: 10.1083/jcb.117.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Okabe S., Hirokawa N. Turnover of fluorescently labelled tubulin and actin in the axon. Nature. 1990 Feb 1;343(6257):479–482. doi: 10.1038/343479a0. [DOI] [PubMed] [Google Scholar]
  25. Reinsch S. S., Mitchison T. J., Kirschner M. Microtubule polymer assembly and transport during axonal elongation. J Cell Biol. 1991 Oct;115(2):365–379. doi: 10.1083/jcb.115.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sabry J., O'Connor T. P., Kirschner M. W. Axonal transport of tubulin in Ti1 pioneer neurons in situ. Neuron. 1995 Jun;14(6):1247–1256. doi: 10.1016/0896-6273(95)90271-6. [DOI] [PubMed] [Google Scholar]
  27. Takeda S., Funakoshi T., Hirokawa N. Tubulin dynamics in neuronal axons of living zebrafish embryos. Neuron. 1995 Jun;14(6):1257–1264. doi: 10.1016/0896-6273(95)90272-4. [DOI] [PubMed] [Google Scholar]
  28. Terasaki M., Schmidek A., Galbraith J. A., Gallant P. E., Reese T. S. Transport of cytoskeletal elements in the squid giant axon. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11500–11503. doi: 10.1073/pnas.92.25.11500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vallee R. B., Bloom G. S. Mechanisms of fast and slow axonal transport. Annu Rev Neurosci. 1991;14:59–92. doi: 10.1146/annurev.ne.14.030191.000423. [DOI] [PubMed] [Google Scholar]
  30. Yu W., Schwei M. J., Baas P. W. Microtubule transport and assembly during axon growth. J Cell Biol. 1996 Apr;133(1):151–157. doi: 10.1083/jcb.133.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zenker W., Hohberg E. A-alpha-nerve-fiber: number of neurotubules in the stem fibre and in the terminal branches. J Neurocytol. 1973 Jun;2(2):143–148. doi: 10.1007/BF01474716. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES