Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Dec 1;135(5):1291–1308. doi: 10.1083/jcb.135.5.1291

F-actin bundles in Drosophila bristles are assembled from modules composed of short filaments

PMCID: PMC2121084  PMID: 8947552

Abstract

The actin bundles in Drosophila bristles run the length of the bristle cell and are accordingly 65 microns (microchaetes) or 400 microns (macrochaetes) in length, depending on the bristle type. Shortly after completion of bristle elongation in pupae, the actin bundles break down as the bristle surface becomes chitinized. The bundles break down in a bizarre way; it is as if each bundle is sawed transversely into pieces that average 3 microns in length. Disassembly of the actin filaments proceeds at the "sawed" surfaces. In all cases, the cuts in adjacent bundles appear in transverse register. From these images, we suspected that each actin bundle is made up of a series of shorter bundles or modules that are attached end-to-end. With fluorescent phalloidin staining and serial thin sections, we show that the modular design is present in nondegenerating bundles. Decoration of the actin filaments in adjacent bundles in the same bristle with subfragment 1 of myosin reveals that the actin filaments in every module have the same polarity. To study how modules form developmentally, we sectioned newly formed and elongating bristles. At the bristle tip are numerous tiny clusters of 6-10 filaments. These clusters become connected together more basally to form filament bundles that are poorly organized, initially, but with time become maximally cross-linked. Additional filaments are then added to the periphery of these organized bundle modules. All these observations make us aware of a new mechanism for the formation and elongation of actin filament bundles, one in which short bundles are assembled and attached end-to-end to other short bundles, as are the vertical girders between the floors of a skyscraper.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appel L. F., Prout M., Abu-Shumays R., Hammonds A., Garbe J. C., Fristrom D., Fristrom J. The Drosophila Stubble-stubbloid gene encodes an apparent transmembrane serine protease required for epithelial morphogenesis. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4937–4941. doi: 10.1073/pnas.90.11.4937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bryan J., Edwards R., Matsudaira P., Otto J., Wulfkuhle J. Fascin, an echinoid actin-bundling protein, is a homolog of the Drosophila singed gene product. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9115–9119. doi: 10.1073/pnas.90.19.9115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cant K., Knowles B. A., Mooseker M. S., Cooley L. Drosophila singed, a fascin homolog, is required for actin bundle formation during oogenesis and bristle extension. J Cell Biol. 1994 Apr;125(2):369–380. doi: 10.1083/jcb.125.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DeRosier D. J., Tilney L. G., Egelman E. Actin in the inner ear: the remarkable structure of the stereocilium. Nature. 1980 Sep 25;287(5780):291–296. doi: 10.1038/287291a0. [DOI] [PubMed] [Google Scholar]
  5. DeRosier D. J., Tilney L. G. How actin filaments pack into bundles. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):525–540. doi: 10.1101/sqb.1982.046.01.049. [DOI] [PubMed] [Google Scholar]
  6. Fowler V. M. Regulation of actin filament length in erythrocytes and striated muscle. Curr Opin Cell Biol. 1996 Feb;8(1):86–96. doi: 10.1016/s0955-0674(96)80052-4. [DOI] [PubMed] [Google Scholar]
  7. Hirokawa N., Tilney L. G., Fujiwara K., Heuser J. E. Organization of actin, myosin, and intermediate filaments in the brush border of intestinal epithelial cells. J Cell Biol. 1982 Aug;94(2):425–443. doi: 10.1083/jcb.94.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hoover K. K., Chien A. J., Corces V. G. Effects of transposable elements on the expression of the forked gene of Drosophila melanogaster. Genetics. 1993 Oct;135(2):507–526. doi: 10.1093/genetics/135.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Overton J. The fine structure of developing bristles in wild type and mutant Drosophila melanogaster. J Morphol. 1967 Aug;122(4):367–379. doi: 10.1002/jmor.1051220406. [DOI] [PubMed] [Google Scholar]
  10. Petersen N. S., Lankenau D. H., Mitchell H. K., Young P., Corces V. G. forked proteins are components of fiber bundles present in developing bristles of Drosophila melanogaster. Genetics. 1994 Jan;136(1):173–182. doi: 10.1093/genetics/136.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Small J. V., Herzog M., Anderson K. Actin filament organization in the fish keratocyte lamellipodium. J Cell Biol. 1995 Jun;129(5):1275–1286. doi: 10.1083/jcb.129.5.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Theriot J. A., Mitchison T. J. Actin microfilament dynamics in locomoting cells. Nature. 1991 Jul 11;352(6331):126–131. doi: 10.1038/352126a0. [DOI] [PubMed] [Google Scholar]
  13. Tilney L. G. Actin filaments in the acrosomal reaction of Limulus sperm. Motion generated by alterations in the packing of the filaments. J Cell Biol. 1975 Feb;64(2):289–310. doi: 10.1083/jcb.64.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tilney L. G., DeRosier D. J., Weber A., Tilney M. S. How Listeria exploits host cell actin to form its own cytoskeleton. II. Nucleation, actin filament polarity, filament assembly, and evidence for a pointed end capper. J Cell Biol. 1992 Jul;118(1):83–93. doi: 10.1083/jcb.118.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tilney L. G., Derosier D. J., Mulroy M. J. The organization of actin filaments in the stereocilia of cochlear hair cells. J Cell Biol. 1980 Jul;86(1):244–259. doi: 10.1083/jcb.86.1.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tilney L. G., Portnoy D. A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol. 1989 Oct;109(4 Pt 1):1597–1608. doi: 10.1083/jcb.109.4.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tilney L. G., Tilney M. S., DeRosier D. J. Actin filaments, stereocilia, and hair cells: how cells count and measure. Annu Rev Cell Biol. 1992;8:257–274. doi: 10.1146/annurev.cb.08.110192.001353. [DOI] [PubMed] [Google Scholar]
  18. Tilney L. G., Tilney M. S., Guild G. M. F actin bundles in Drosophila bristles. I. Two filament cross-links are involved in bundling. J Cell Biol. 1995 Aug;130(3):629–638. doi: 10.1083/jcb.130.3.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tilney L. G., Tilney M. S., Guild G. M. Formation of actin filament bundles in the ring canals of developing Drosophila follicles. J Cell Biol. 1996 Apr;133(1):61–74. doi: 10.1083/jcb.133.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tilney L. G., Tilney M. S. The wily ways of a parasite: induction of actin assembly by Listeria. Trends Microbiol. 1993 Apr;1(1):25–31. doi: 10.1016/0966-842x(93)90021-i. [DOI] [PubMed] [Google Scholar]
  21. Verheyen E. M., Cooley L. Profilin mutations disrupt multiple actin-dependent processes during Drosophila development. Development. 1994 Apr;120(4):717–728. doi: 10.1242/dev.120.4.717. [DOI] [PubMed] [Google Scholar]
  22. Way M., Sanders M., Garcia C., Sakai J., Matsudaira P. Sequence and domain organization of scruin, an actin-cross-linking protein in the acrosomal process of Limulus sperm. J Cell Biol. 1995 Jan;128(1-2):51–60. doi: 10.1083/jcb.128.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES