Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Dec 1;135(5):1369–1376. doi: 10.1083/jcb.135.5.1369

Presence of double-strand breaks with single-base 3' overhangs in cells undergoing apoptosis but not necrosis

PMCID: PMC2121088  PMID: 8947557

Abstract

Apoptotic cells in rat thymus were labeled in situ in paraffin-embedded and frozen tissue sections by ligation of double-stranded DNA fragments containing digoxigenin or Texas red. Two forms of double-stranded DNA fragments were prepared using the polymerase chain reaction: one was synthesized using Taq polymerase, which yields products with single- base 3' overhangs, and one using Pfu polymerase, which produces blunt- ended products. Both types of fragment could be ligated to apoptotic nuclei in thymus, indicating the presence in such nuclei of DNA double- strand breaks with single-base 3' overhangs as well as blunt ends. However, in nuclei with DNA damage resulting from a variety of nonapoptotic processes (necrosis, in vitro autolysis, peroxide damage, and heating) single-base 3' overhangs were either nondetectable or present at much lower concentrations than in apoptotic cells. Blunt DNA ends were present in such tissues, but at lower concentrations than in apoptotic cells. In contrast, in all of these forms of DNA damage, nuclei contained abundant 3'-hydroxyls accessible to labeling with terminal deoxynucleotidyl transferase. Thus, although single-base 3' overhangs and blunt ends are present in apoptotic nuclei, the specificity of the in situ ligation of 3'-overhang fragments to apoptotic nuclei indicates that apoptotic cells labeled in this way can readily be distinguished from cells with nonapoptotic DNA damage. These data are consistent with the involvement of an endonuclease similar to DNase I in apoptosis, which is predicted to leave short 3' overhangs as well as blunt ends in digestion of chromatin.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alnemri E. S., Litwack G. Activation of internucleosomal DNA cleavage in human CEM lymphocytes by glucocorticoid and novobiocin. Evidence for a non-Ca2(+)-requiring mechanism(s). J Biol Chem. 1990 Oct 5;265(28):17323–17333. [PubMed] [Google Scholar]
  2. Arends M. J., Morris R. G., Wyllie A. H. Apoptosis. The role of the endonuclease. Am J Pathol. 1990 Mar;136(3):593–608. [PMC free article] [PubMed] [Google Scholar]
  3. Beletsky I. P., Matyásová J., Nikonova L. V., Skalka M., Umansky S. R. On the role of Ca, Mg-dependent nuclease in the postirradiation degradation of chromatin in lymphoid tissues. Gen Physiol Biophys. 1989 Aug;8(4):381–398. [PubMed] [Google Scholar]
  4. Clark J. M. Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases. Nucleic Acids Res. 1988 Oct 25;16(20):9677–9686. doi: 10.1093/nar/16.20.9677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cusick M. E., Wassarman P. M., DePamphilis M. L. Application of nucleases to visualizing chromatin organization at replication forks. Methods Enzymol. 1989;170:290–316. doi: 10.1016/0076-6879(89)70053-7. [DOI] [PubMed] [Google Scholar]
  6. Didenko V. V., Hornsby P. J. A quantitative luminescence assay for nonradioactive nucleic acid probes. J Histochem Cytochem. 1996 Jun;44(6):657–660. doi: 10.1177/44.6.8666750. [DOI] [PubMed] [Google Scholar]
  7. Didenko V. V., Wang X., Yang L., Hornsby P. J. Expression of p21(WAF1/CIP1/SDI1) and p53 in apoptotic cells in the adrenal cortex and induction by ischemia/reperfusion injury. J Clin Invest. 1996 Apr 1;97(7):1723–1731. doi: 10.1172/JCI118599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gates G. F., Miller J. H., Stanley P. Necrosis of Wilms tumors. J Urol. 1980 Jun;123(6):916–920. doi: 10.1016/s0022-5347(17)56192-3. [DOI] [PubMed] [Google Scholar]
  9. Gavrieli Y., Sherman Y., Ben-Sasson S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992 Nov;119(3):493–501. doi: 10.1083/jcb.119.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gottlieb R. A., Giesing H. A., Engler R. L., Babior B. M. The acid deoxyribonuclease of neutrophils: a possible participant in apoptosis-associated genome destruction. Blood. 1995 Sep 15;86(6):2414–2418. [PubMed] [Google Scholar]
  11. Hu G. DNA polymerase-catalyzed addition of nontemplated extra nucleotides to the 3' end of a DNA fragment. DNA Cell Biol. 1993 Oct;12(8):763–770. doi: 10.1089/dna.1993.12.763. [DOI] [PubMed] [Google Scholar]
  12. Imlay J. A., Linn S. DNA damage and oxygen radical toxicity. Science. 1988 Jun 3;240(4857):1302–1309. doi: 10.1126/science.3287616. [DOI] [PubMed] [Google Scholar]
  13. Khodarev N. N., Ashwell J. D. An inducible lymphocyte nuclear Ca2+/Mg(2+)-dependent endonuclease associated with apoptosis. J Immunol. 1996 Feb 1;156(3):922–931. [PubMed] [Google Scholar]
  14. Majno G., Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995 Jan;146(1):3–15. [PMC free article] [PubMed] [Google Scholar]
  15. Mannherz H. G., Peitsch M. C., Zanotti S., Paddenberg R., Polzar B. A new function for an old enzyme: the role of DNase I in apoptosis. Curr Top Microbiol Immunol. 1995;198:161–174. doi: 10.1007/978-3-642-79414-8_10. [DOI] [PubMed] [Google Scholar]
  16. Montague J. W., Gaido M. L., Frye C., Cidlowski J. A. A calcium-dependent nuclease from apoptotic rat thymocytes is homologous with cyclophilin. Recombinant cyclophilins A, B, and C have nuclease activity. J Biol Chem. 1994 Jul 22;269(29):18877–18880. [PubMed] [Google Scholar]
  17. Nikonova L. V., Nelipovich P. A., Umansky S. R. The involvement of nuclear nucleases in rat thymocyte DNA degradation after gamma-irradiation. Biochim Biophys Acta. 1982 Dec 31;699(3):281–289. doi: 10.1016/0167-4781(82)90118-x. [DOI] [PubMed] [Google Scholar]
  18. Peitsch M. C., Müller C., Tschopp J. DNA fragmentation during apoptosis is caused by frequent single-strand cuts. Nucleic Acids Res. 1993 Sep 11;21(18):4206–4209. doi: 10.1093/nar/21.18.4206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Polzar B., Peitsch M. C., Loos R., Tschopp J., Mannherz H. G. Overexpression of deoxyribonuclease I (DNase I) transfected into COS-cells: its distribution during apoptotic cell death. Eur J Cell Biol. 1993 Dec;62(2):397–405. [PubMed] [Google Scholar]
  20. Polzar B., Zanotti S., Stephan H., Rauch F., Peitsch M. C., Irmler M., Tschopp J., Mannherz H. G. Distribution of deoxyribonuclease I in rat tissues and its correlation to cellular turnover and apoptosis (programmed cell death). Eur J Cell Biol. 1994 Jun;64(1):200–210. [PubMed] [Google Scholar]
  21. Rink A., Fung K. M., Trojanowski J. Q., Lee V. M., Neugebauer E., McIntosh T. K. Evidence of apoptotic cell death after experimental traumatic brain injury in the rat. Am J Pathol. 1995 Dec;147(6):1575–1583. [PMC free article] [PubMed] [Google Scholar]
  22. Shiokawa D., Ohyama H., Yamada T., Takahashi K., Tanuma S. Identification of an endonuclease responsible for apoptosis in rat thymocytes. Eur J Biochem. 1994 Nov 15;226(1):23–30. doi: 10.1111/j.1432-1033.1994.tb20022.x. [DOI] [PubMed] [Google Scholar]
  23. Sollner-Webb B., Melchior W., Jr, Felsenfeld G. DNAase I, DNAase II and staphylococcal nuclease cut at different, yet symmetrically located, sites in the nucleosome core. Cell. 1978 Jul;14(3):611–627. doi: 10.1016/0092-8674(78)90246-5. [DOI] [PubMed] [Google Scholar]
  24. Van Dyck J. M., Wattiaux R. Distribution intracellulaire de l'exonucléase acide dans le foie de rat. Eur J Biochem. 1968 Dec;7(1):13–20. doi: 10.1111/j.1432-1033.1968.tb19567.x. [DOI] [PubMed] [Google Scholar]
  25. Wyllie A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature. 1980 Apr 10;284(5756):555–556. doi: 10.1038/284555a0. [DOI] [PubMed] [Google Scholar]
  26. Yang L., Didenko V. V., Noda A., Bilyeu T. A., Darlington D. J., Smith J. R., Hornsby P. J. Increased expression of p21Sdi1 in adrenocortical cells when they are placed in culture. Exp Cell Res. 1995 Nov;221(1):126–131. doi: 10.1006/excr.1995.1359. [DOI] [PubMed] [Google Scholar]
  27. Zanotti S., Polzar B., Stephan H., Doll U., Niessing J., Mannherz H. G. Localization of deoxyribonuclease I gene transcripts and protein in rat tissues and its correlation with apoptotic cell elimination. Histochem Cell Biol. 1995 May;103(5):369–377. doi: 10.1007/BF01457812. [DOI] [PubMed] [Google Scholar]
  28. Zhang C., Robertson M. J., Schlossman S. F. A triplet of nuclease proteins (NP42-50) is activated in human Jurkat cells undergoing apoptosis. Cell Immunol. 1995 Oct 15;165(2):161–167. doi: 10.1006/cimm.1995.1201. [DOI] [PubMed] [Google Scholar]
  29. van Haelst U. Light and electron microscopic study of the normal and pathological thymus of the rat. I. The normal thymus. Z Zellforsch Mikrosk Anat. 1967;77(4):534–553. doi: 10.1007/BF00319347. [DOI] [PubMed] [Google Scholar]
  30. van Haelst U. Light and electron microscopic study of the normal and pathological thymus of the rat. II. The acute thymic involution. Z Zellforsch Mikrosk Anat. 1967;80(2):153–182. doi: 10.1007/BF00337454. [DOI] [PubMed] [Google Scholar]
  31. van Lookeren Campagne M., Lucassen P. J., Vermeulen J. P., Balázs R. NMDA and kainate induce internucleosomal DNA cleavage associated with both apoptotic and necrotic cell death in the neonatal rat brain. Eur J Neurosci. 1995 Jul 1;7(7):1627–1640. doi: 10.1111/j.1460-9568.1995.tb01158.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES