Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1987 Jun;169(6):2516–2522. doi: 10.1128/jb.169.6.2516-2522.1987

Role of oxygen radicals in the phototoxicity of tetracyclines toward Escherichia coli B.

J P Martin Jr, K Colina, N Logsdon
PMCID: PMC212109  PMID: 3034858

Abstract

Photoillumination of tetracycline derivatives with low-intensity (320- to 400-nm) light and visible light generated superoxide, observed as the reduction of ferricytochrome c. The rate of reduction was dependent on the tetracycline concentration and on the derivative being examined, with doxycycline greater than or equal to demeclocycline greater than tetracycline greater than oxytetracycline. Tetracycline-mediated cytochrome c reduction was oxygen dependent and inhibited up to 70% by superoxide dismutase. Illuminated tetracyclines were lethal to Escherichia coli B incubated in a glucose minimal medium containing chloramphenicol. This lethality was light dependent, oxygen dependent, and dependent on the concentration of tetracycline. Kill rates also varied according to the derivative under study, with doxycycline greater than or equal to demeclocycline greater than tetracycline greater than oxytetracycline. The addition of superoxide dismutase and catalase to the incubation medium partially protected E. coli B against the light-dependent lethality. Preinduction of intracellular superoxide dismutase and catalase substantially protected E. coli B against the phototoxicity of tetracyclines. Iron EDTA augmented the phototoxicity of tetracyclines, while diethylenetriaminepentaacetic acid protected against their lethality. Hydroxyl radical scavengers also conferred protection against tetracycline phototoxicity. The extent of protection was in order of the in vitro reactivity of the scavengers with the hydroxyl radical. These results indicate that superoxide, hydrogen peroxide, and the hydroxyl radical are generated by illuminated tetracyclines and are molecular agents of tetracycline phototoxicity in E. coli B.

Full text

PDF
2516

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEERS R. F., Jr, SIZER I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952 Mar;195(1):133–140. [PubMed] [Google Scholar]
  2. Barza M., Brown R. B., Shanks C., Gamble C., Weinstein L. Relation between lipophilicity and pharmacological behavior of minocycline, doxycycline, tetracycline, and oxytetracycline in dogs. Antimicrob Agents Chemother. 1975 Dec;8(6):713–720. doi: 10.1128/aac.8.6.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bjellerup M., Kjellström T., Ljunggren B. Influence of tetracycline phototoxicity on the growth of cultured human fibroblasts. J Invest Dermatol. 1985 Dec;85(6):573–574. doi: 10.1111/1523-1747.ep12277419. [DOI] [PubMed] [Google Scholar]
  4. Bjellerup M., Ljunggren B. Photohemolytic potency of tetracyclines. J Invest Dermatol. 1985 Apr;84(4):262–264. doi: 10.1111/1523-1747.ep12265336. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Chopra I., Howe T. G. Bacterial resistance to the tetracyclines. Microbiol Rev. 1978 Dec;42(4):707–724. doi: 10.1128/mr.42.4.707-724.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cohen G. The generation of hydroxyl radicals in biologic systems: toxicological aspects. Photochem Photobiol. 1978 Oct-Nov;28(4-5):669–675. doi: 10.1111/j.1751-1097.1978.tb06993.x. [DOI] [PubMed] [Google Scholar]
  8. DiGuiseppi J., Fridovich I. Oxygen toxicity in Streptococcus sanguis. The relative importance of superoxide and hydroxyl radicals. J Biol Chem. 1982 Apr 25;257(8):4046–4051. [PubMed] [Google Scholar]
  9. Diguiseppi J., Fridovich I. Ethylene from 2-keto-4-thiomethyl butyric acid: the Haber-Weiss reaction. Arch Biochem Biophys. 1980 Dec;205(2):323–329. doi: 10.1016/0003-9861(80)90114-9. [DOI] [PubMed] [Google Scholar]
  10. Epstein J. H., Tuffanelli D. L., Seibert J. S., Epstein W. L. Porphyria-like cutaneous changes induced by tetracycline hydrochloride photosensitization. Arch Dermatol. 1976 May;112(5):661–666. [PubMed] [Google Scholar]
  11. Fridovich I. The biology of oxygen radicals. Science. 1978 Sep 8;201(4359):875–880. doi: 10.1126/science.210504. [DOI] [PubMed] [Google Scholar]
  12. Frost P., Weinstein G. D., Gomez E. C. Methacycline and demeclocycline in relation to sunlight. JAMA. 1971 Apr 12;216(2):326–329. [PubMed] [Google Scholar]
  13. Frost P., Weinstein G. D., Gomez E. C. Phototoxic potential of minocycline and doxycycline. Arch Dermatol. 1972 May;105(5):681–683. [PubMed] [Google Scholar]
  14. Goldman R. A., Hasan T., Hall C. C., Strycharz W. A., Cooperman B. S. Photoincorporation of tetracycline into Escherichia coli ribosomes. Identification of the major proteins photolabeled by native tetracycline and tetracycline photoproducts and implications for the inhibitory action of tetracycline on protein synthesis. Biochemistry. 1983 Jan 18;22(2):359–368. doi: 10.1021/bi00271a020. [DOI] [PubMed] [Google Scholar]
  15. Gregory E. M., Fridovich I. Oxygen metabolism in Lactobacillus plantarum. J Bacteriol. 1974 Jan;117(1):166–169. doi: 10.1128/jb.117.1.166-169.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hasan T., Kochevar I. E., McAuliffe D. J., Cooperman B. S., Abdulah D. Mechanism of tetracycline phototoxicity. J Invest Dermatol. 1984 Sep;83(3):179–183. doi: 10.1111/1523-1747.ep12263531. [DOI] [PubMed] [Google Scholar]
  17. Hassan H. M., Fridovich I. Enzymatic defenses against the toxicity of oxygen and of streptonigrin in Escherichia coli. J Bacteriol. 1977 Mar;129(3):1574–1583. doi: 10.1128/jb.129.3.1574-1583.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hassan H. M., Fridovich I. Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Arch Biochem Biophys. 1979 Sep;196(2):385–395. doi: 10.1016/0003-9861(79)90289-3. [DOI] [PubMed] [Google Scholar]
  19. Hassan H. M., Fridovich I. Mechanism of the antibiotic action pyocyanine. J Bacteriol. 1980 Jan;141(1):156–163. doi: 10.1128/jb.141.1.156-163.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hassan H. M., Fridovich I. Paraquat and Escherichia coli. Mechanism of production of extracellular superoxide radical. J Biol Chem. 1979 Nov 10;254(21):10846–10852. [PubMed] [Google Scholar]
  21. Hassan H. M., Fridovich I. Regulation of the synthesis of catalase and peroxidase in Escherichia coli. J Biol Chem. 1978 Sep 25;253(18):6445–6420. [PubMed] [Google Scholar]
  22. Hassan H. M., Fridovich I. Superoxide radical and the oxygen enhancement of the toxicity of paraquat in Escherichia coli. J Biol Chem. 1978 Nov 25;253(22):8143–8148. [PubMed] [Google Scholar]
  23. Lynch R. E., Fridovich I. Effects of superoxide on the erythrocyte membrane. J Biol Chem. 1978 Mar 25;253(6):1838–1845. [PubMed] [Google Scholar]
  24. McCord J. M., Day E. D., Jr Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex. FEBS Lett. 1978 Feb 1;86(1):139–142. doi: 10.1016/0014-5793(78)80116-1. [DOI] [PubMed] [Google Scholar]
  25. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  26. Murphy T. M. Inactivation of tobacco mosaic virus ribonucleic acid by near- and middle- ultraviolet light: sensitization by sulfanilamide and chlortetracycline. Biochem Biophys Res Commun. 1975 Aug 4;65(3):1108–1114. doi: 10.1016/s0006-291x(75)80500-6. [DOI] [PubMed] [Google Scholar]
  27. Nilsson R., Swanbeck G., Wennersten G. Primary mechanisms of erythrocyte photolysis induced by biological sensitizers and phototoxic drugs. Photochem Photobiol. 1975 Nov;22(5):183–186. doi: 10.1111/j.1751-1097.1975.tb06734.x. [DOI] [PubMed] [Google Scholar]
  28. Novo E., Esparza J. Tetracycline-mediated photodynamic inactivation of animal viruses. J Gen Virol. 1979 Nov;45(2):323–329. doi: 10.1099/0022-1317-45-2-323. [DOI] [PubMed] [Google Scholar]
  29. Piette J., Decuyper J., Van de Vorst A. DNA alterations photosensitized by tetracycline and some of its derivatives. J Invest Dermatol. 1986 Jun;86(6):653–658. doi: 10.1111/1523-1747.ep12275688. [DOI] [PubMed] [Google Scholar]
  30. Pugh S. Y., Fridovich I. Induction of superoxide dismutases in Escherichia coli B by metal chelators. J Bacteriol. 1985 Apr;162(1):196–202. doi: 10.1128/jb.162.1.196-202.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Repine J. E., Fox R. B., Berger E. M. Hydrogen peroxide kills Staphylococcus aureus by reacting with staphylococcal iron to form hydroxyl radical. J Biol Chem. 1981 Jul 25;256(14):7094–7096. [PubMed] [Google Scholar]
  32. Rosen H., Klebanoff S. J. Role of iron and ethylenediaminetetraacetic acid in the bactericidal activity of a superoxide anion-generating system. Arch Biochem Biophys. 1981 May;208(2):512–519. doi: 10.1016/0003-9861(81)90539-7. [DOI] [PubMed] [Google Scholar]
  33. Waud W. R., Brady F. O., Wiley R. D., Rajagopalan K. V. A new purification procedure for bovine milk xanthine oxidase: effect of proteolysis on the subunit structure. Arch Biochem Biophys. 1975 Aug;169(2):695–701. doi: 10.1016/0003-9861(75)90214-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES