Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1987 Jun;169(6):2685–2690. doi: 10.1128/jb.169.6.2685-2690.1987

Expression and regulation of a Vibrio alginolyticus sucrose utilization system cloned in Escherichia coli.

R R Scholle, V E Coyne, R Maharaj, F T Robb, D R Woods
PMCID: PMC212159  PMID: 3034863

Abstract

A halotolerant collagenolytic Vibrio alginolyticus strain isolated from salted hides had intracellular sucrase activity and did not secret sucrase into the medium. The strain actively transported sucrose by a sucrose-inducible, Na+-independent process. A 10.4-kilobase DNA fragment of V. alginolyticus DNA was cloned into Escherichia coli. The recombinant E. coli(pVS100) could utilize sucrose as a sole carbon source. In contrast to V. alginolyticus, the recombinant E. coli produced both intra- and extracellular sucrase activities. Up to 20% of the total sucrase activity was in the supernatant. Sucrase synthesis in E. coli(pVS100) was inducible and was subject to glucose repression, which was relieved by cyclic AMP. Sucrose was actively transported by a sucrose-inducible, Na+-independent system in E. coli(pVS100). Sucrose uptake was inhibited by the addition of a proton conductor. The maximum velocity and apparent Km values of sucrose uptake for the V. alginolyticus strain and E. coli(pVS100) were 130 nmol/mg of protein per min and 50 microM and 6 nmol/mg of protein per min and 275 microM, respectively.

Full text

PDF
2685

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fouet A., Klier A., Rapoport G. Cloning and expression in Escherichia coli of the sucrase gene from Bacillus subtilis. Mol Gen Genet. 1982;186(3):399–404. doi: 10.1007/BF00729460. [DOI] [PubMed] [Google Scholar]
  2. Gay P., Le Coq D., Steinmetz M., Ferrari E., Hoch J. A. Cloning structural gene sacB, which codes for exoenzyme levansucrase of Bacillus subtilis: expression of the gene in Escherichia coli. J Bacteriol. 1983 Mar;153(3):1424–1431. doi: 10.1128/jb.153.3.1424-1431.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Goldberg I., Mekalanos J. J. Effect of a recA mutation on cholera toxin gene amplification and deletion events. J Bacteriol. 1986 Mar;165(3):723–731. doi: 10.1128/jb.165.3.723-731.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ish-Horowicz D., Burke J. F. Rapid and efficient cosmid cloning. Nucleic Acids Res. 1981 Jul 10;9(13):2989–2998. doi: 10.1093/nar/9.13.2989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kakinuma Y., Unemoto T. Sucrose uptake is driven by the Na+ electrochemical potential in the marine bacterium Vibrio alginolyticus. J Bacteriol. 1985 Sep;163(3):1293–1295. doi: 10.1128/jb.163.3.1293-1295.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kunst F., Pascal M., Lefesant J. A., Walle J., Dedonder R. Purification and some properties of an endocellular sucrase from a constitutive mutant of Bacillus subtilis Marburg 168. Eur J Biochem. 1974 Mar 1;42(2):611–620. doi: 10.1111/j.1432-1033.1974.tb03376.x. [DOI] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Long S., Mothibeli M. A., Robb F. T., Woods D. R. Regulation of extracellular alkaline protease activity by histidine in a collagenolytic Vibrio alginolyticus strain. J Gen Microbiol. 1981 Nov;127(1):193–199. doi: 10.1099/00221287-127-1-193. [DOI] [PubMed] [Google Scholar]
  9. MacLeod P. R., MacLeod R. A. Cloning in Escherichia coli K-12 of a Na+-dependent transport system from a marine bacterium. J Bacteriol. 1986 Mar;165(3):825–830. doi: 10.1128/jb.165.3.825-830.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Reid G. C., Woods D. R., Robb F. T. Peptone induction and rifampin-insensitive collagenase production by Vibrio alginolyticus. J Bacteriol. 1980 May;142(2):447–454. doi: 10.1128/jb.142.2.447-454.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Remaut E., Tsao H., Fiers W. Improved plasmid vectors with a thermoinducible expression and temperature-regulated runaway replication. Gene. 1983 Apr;22(1):103–113. doi: 10.1016/0378-1119(83)90069-0. [DOI] [PubMed] [Google Scholar]
  12. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  13. Schmid K., Schupfner M., Schmitt R. Plasmid-mediated uptake and metabolism of sucrose by Escherichia coli K-12. J Bacteriol. 1982 Jul;151(1):68–76. doi: 10.1128/jb.151.1.68-76.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Slee A. M., Tanzer J. M. Phosphoenolpyruvate-dependent sucrose phosphotransferase activity in Streptococcus mutans NCTC 10449. Infect Immun. 1979 Jun;24(3):821–828. doi: 10.1128/iai.24.3.821-828.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Smith G. E., Summers M. D. The bidirectional transfer of DNA and RNA to nitrocellulose or diazobenzyloxymethyl-paper. Anal Biochem. 1980 Nov 15;109(1):123–129. doi: 10.1016/0003-2697(80)90019-6. [DOI] [PubMed] [Google Scholar]
  16. St Martin E. J., Wittenberger C. L. Characterization of a phosphoenolpyruvate-dependent sucrose phosphotransferase system in Streptococcus mutans. Infect Immun. 1979 Jun;24(3):865–868. doi: 10.1128/iai.24.3.865-868.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stern M. J., Ames G. F., Smith N. H., Robinson E. C., Higgins C. F. Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell. 1984 Jul;37(3):1015–1026. doi: 10.1016/0092-8674(84)90436-7. [DOI] [PubMed] [Google Scholar]
  18. Sykes R. B., Nordström K. Microiodometric determination of beta-lactamase activity. Antimicrob Agents Chemother. 1972 Feb;1(2):94–99. doi: 10.1128/aac.1.2.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Thompson J., Chassy B. M. Uptake and metabolism of sucrose by Streptococcus lactis. J Bacteriol. 1981 Aug;147(2):543–551. doi: 10.1128/jb.147.2.543-551.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tokuda H., Nakamura T., Unemoto T. Potassium ion is required for the generation of pH-dependent membrane potential and delta pH by the marine bacterium Vibrio alginolyticus. Biochemistry. 1981 Jul 7;20(14):4198–4203. doi: 10.1021/bi00517a038. [DOI] [PubMed] [Google Scholar]
  21. Tokuda H., Sugasawa M., Unemoto T. Roles of Na+ and K+ in alpha-aminoisobutyric acid transport by the marine bacterium Vibrio alginolyticus. J Biol Chem. 1982 Jan 25;257(2):788–794. [PubMed] [Google Scholar]
  22. Welton R. L., Woods D. R. Collagenase production by Achromobacter iophagus. Biochim Biophys Acta. 1975 Mar 28;384(1):228–234. doi: 10.1016/0005-2744(75)90111-4. [DOI] [PubMed] [Google Scholar]
  23. Welton R. L., Woods D. R. Halotolerant collagenolytic activity of Achromobacter iophagus. J Gen Microbiol. 1973 Mar;75(1):191–196. doi: 10.1099/00221287-75-1-191. [DOI] [PubMed] [Google Scholar]
  24. Zabeau M., Stanley K. K. Enhanced expression of cro-beta-galactosidase fusion proteins under the control of the PR promoter of bacteriophage lambda. EMBO J. 1982;1(10):1217–1224. doi: 10.1002/j.1460-2075.1982.tb00016.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES