Abstract
Wild-type Saccharomyces cerevisiae organisms contain three kinases which catalyze the phosphorylation of glucose: two hexokinase isozymes (PI and PII) and one glucokinase. Glucose transport measurements for triple-kinaseless mutants, which lack all three of these kinases, confirm that the kinases are involved in the low apparent Km transport process observed in metabolizing cells. Thus kinase-positive cells containing one or more of the three kinases exhibit biphasic transport kinetics with a low apparent Km (1 to 2 mM) and high apparent Km (40 to 50 mM) component. Triple-kinaseless cells, however, exhibit only the high apparent Km component of kinase-positive cells (60 mM). Kinetic analysis of glucose transport in the triple-kinaseless cells shows that glucose is transported by a facilitated diffusion process which exhibits trans-stimulated equilibrium exchange and influx counterflow.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURGER M., HEJMOVA L., KLEINZELLER A. Transport of some mono- and di-saccharides into yeast cells. Biochem J. 1959 Feb;71(2):233–242. doi: 10.1042/bj0710233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker G. F., Widdas W. F. The asymmetry of the facilitated transfer system for hexoses in human red cells and the simple kinetics of a two component model. J Physiol. 1973 May;231(1):143–165. doi: 10.1113/jphysiol.1973.sp010225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bisson L. F., Fraenkel D. G. Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1730–1734. doi: 10.1073/pnas.80.6.1730. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bisson L. F., Fraenkel D. G. Transport of 6-deoxyglucose in Saccharomyces cerevisiae. J Bacteriol. 1983 Sep;155(3):995–1000. doi: 10.1128/jb.155.3.995-1000.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bisson L. F., Neigeborn L., Carlson M., Fraenkel D. G. The SNF3 gene is required for high-affinity glucose transport in Saccharomyces cerevisiae. J Bacteriol. 1987 Apr;169(4):1656–1662. doi: 10.1128/jb.169.4.1656-1662.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cirillo V. P. Relationship between sugar structure and competition for the sugar transport system in Bakers' yeast. J Bacteriol. 1968 Feb;95(2):603–611. doi: 10.1128/jb.95.2.603-611.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franzusoff A. J., Cirillo V. P. Glucose transport activity in isolated plasma membrane vesicles from Saccharomyces cerevisiae. J Biol Chem. 1983 Mar 25;258(6):3608–3614. [PubMed] [Google Scholar]
- Franzusoff A., Cirillo V. P. Uptake and phosphorylation of 2-deoxy-D-glucose by wild-type and single-kinase strains of Saccharomyces cerevisiae. Biochim Biophys Acta. 1982 Jun 14;688(2):295–304. doi: 10.1016/0005-2736(82)90340-6. [DOI] [PubMed] [Google Scholar]
- Ginsburg H., Yeroushalmy S. Effects of temperature on the transport of galactose in human erythrocytes. J Physiol. 1978 Sep;282:399–417. doi: 10.1113/jphysiol.1978.sp012471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kotyk A., Michaljanicová D., Saiyid N. H. Effect of uranyl ions on steady-state distribution of monosaccharides in baker's yeast. Folia Microbiol (Praha) 1971;16(5):355–358. doi: 10.1007/BF02875753. [DOI] [PubMed] [Google Scholar]
- Kotyk A., Michaljanicová D. Uptake of trehalose by Saccharomyces cerevisiae. J Gen Microbiol. 1979 Feb;110(2):323–332. doi: 10.1099/00221287-110-2-323. [DOI] [PubMed] [Google Scholar]
- Kotyk A. Properties of the sugar carrier in baker's yeast. II. Specificity of transport. Folia Microbiol (Praha) 1967;12(2):121–131. doi: 10.1007/BF02896872. [DOI] [PubMed] [Google Scholar]
- Kou S. C., Christensen M. S., Cirillo V. P. Galactose transport in Saccharomyces cerevisiae. II. Characteristics of galactose uptake and exchange in galactokinaseless cells. J Bacteriol. 1970 Sep;103(3):671–678. doi: 10.1128/jb.103.3.671-678.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lobo Z., Maitra P. K. Resistance to 2-deoxyglucose in yeast: a direct selection of mutants lacking glucose-phosphorylating enzymes. Mol Gen Genet. 1977 Dec 9;157(3):297–300. doi: 10.1007/BF00268666. [DOI] [PubMed] [Google Scholar]
- Meredith S. A., Romano A. H. Uptake and phosphorylation of 2-deoxy-D-glucose by wild type and respiration-deficient bakers' yeast. Biochim Biophys Acta. 1977 May 26;497(3):745–759. doi: 10.1016/0304-4165(77)90295-1. [DOI] [PubMed] [Google Scholar]
- Nørby J. G., Ottolenghi P., Jensen J. Scatchard plot: common misinterpretation of binding experiments. Anal Biochem. 1980 Mar 1;102(2):318–320. doi: 10.1016/0003-2697(80)90160-8. [DOI] [PubMed] [Google Scholar]
- Ongjoco R., Szkutnicka K., Cirillo V. P. Glucose transport in vesicles reconstituted from Saccharomyces cerevisiae membranes and liposomes. J Bacteriol. 1987 Jul;169(7):2926–2931. doi: 10.1128/jb.169.7.2926-2931.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Romano A. H. Facilitated diffusion of 6-deoxy-D-glucose in bakers' yeast: evidence against phosphorylation-associated transport of glucose. J Bacteriol. 1982 Dec;152(3):1295–1297. doi: 10.1128/jb.152.3.1295-1297.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenthal H. E. A graphic method for the determination and presentation of binding parameters in a complex system. Anal Biochem. 1967 Sep;20(3):525–532. doi: 10.1016/0003-2697(67)90297-7. [DOI] [PubMed] [Google Scholar]
- Serrano R., Delafuente G. Regulatory properties of the constitutive hexose transport in Saccharomyces cerevisiae. Mol Cell Biochem. 1974 Dec 20;5(3):161–171. doi: 10.1007/BF01731379. [DOI] [PubMed] [Google Scholar]
- Tschopp J. F., Emr S. D., Field C., Schekman R. GAL2 codes for a membrane-bound subunit of the galactose permease in Saccharomyces cerevisiae. J Bacteriol. 1986 Apr;166(1):313–318. doi: 10.1128/jb.166.1.313-318.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winkler H. H., Wilson T. H. The role of energy coupling in the transport of beta-galactosides by Escherichia coli. J Biol Chem. 1966 May 25;241(10):2200–2211. [PubMed] [Google Scholar]
- van Steveninck J. The mechanism of transmembrane glucose transport in yeast: evidence for phosphorylation, associated with transport. Arch Biochem Biophys. 1969 Mar;130(1):244–252. doi: 10.1016/0003-9861(69)90030-7. [DOI] [PubMed] [Google Scholar]
- van Steveninck J. Transport-associated phosphorylation of 2-deoxy-D-glucose in yeast. Biochim Biophys Acta. 1968 Nov 5;163(3):386–394. doi: 10.1016/0005-2736(68)90123-5. [DOI] [PubMed] [Google Scholar]