Abstract
Inhibition of sterol uptake in Saccharomyces cerevisiae sterol auxotroph FY3 (alpha hem1 erg7 ura) by delta-aminolevulinic acid (ALA) is dependent on the ability of the organism to synthesize heme from ALA. Sterol-depleted cells not exposed to ALA or strain PFY3 cells, with a double heme mutation, exposed to ALA did not exhibit inhibition of sterol uptake. Addition of ALA to sterol-depleted FY3 stimulated production of a high endogenous concentration of 2,3-oxidosqualene (25.55 micrograms mg-1 [dry weight]) at 24 h, whereas FY3 not exposed to ALA or PFY3 exposed to ALA did not accumulate 2,3-oxidosqualene. The high concentration of 2,3-oxidosqualene in FY3 with ALA decreased, and 2,3;22,23-dioxidosqualene increased to a very high level. The elevation of 2,3-oxidosqualene by ALA was correlated with a fivefold increase in the activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (EC 1.1.1.34). The enhanced activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase was prevented by cycloheximide but not chloramphenicol and was dependent on a fermentative energy source. Inhibition of sterol uptake could not be attributed to 2,3-oxidosqualene or 2,3;22,23-dioxidosqualene but was due to a nonsaturating level of ergosterol produced as a consequence of heme competency through a leaky erg7 mutation.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Astin A. M., Haslam J. M. The manipulation of cellular cytochrome and lipid composition in a haem mutant of Saccharomyces cerevisiae. Biochem J. 1977 Aug 15;166(2):275–285. doi: 10.1042/bj1660275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bard M., Woods R. A., Haslam J. M. Porphyrine mutants of Saccharomyces cerevisiae: correlated lesions in sterol and fatty acid biosynthesis. Biochem Biophys Res Commun. 1974 Jan 23;56(2):324–330. doi: 10.1016/0006-291x(74)90845-6. [DOI] [PubMed] [Google Scholar]
- Berndt J., Boll M., Löwel M., Gaumert R. Regulation of sterol biosynthesis in yeast: induction of 3-hydroxy-3-methylglutaryl-CoA reductase by glucose. Biochem Biophys Res Commun. 1973 Apr 16;51(4):843–848. doi: 10.1016/0006-291x(73)90003-x. [DOI] [PubMed] [Google Scholar]
- Boll M., Löwel M., Berndt J. Effect of unsaturated fatty acids on sterol biosynthesis in yeast. Biochim Biophys Acta. 1980 Dec 5;620(3):429–439. doi: 10.1016/0005-2760(80)90134-4. [DOI] [PubMed] [Google Scholar]
- Boll M., Löwel M., Still J., Berndt J. Sterol biosynthesis in yeast. 3-Hydorxy-3-methylglutaryl-Coenzyme A reductase as a regulatory enzyme. Eur J Biochem. 1975 Jun;54(2):435–444. doi: 10.1111/j.1432-1033.1975.tb04154.x. [DOI] [PubMed] [Google Scholar]
- Buttke T. M., Pyle A. L. Effects of unsaturated fatty acid deprivation on neutral lipid synthesis in Saccharomyces cerevisiae. J Bacteriol. 1982 Nov;152(2):747–756. doi: 10.1128/jb.152.2.747-756.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark-Walker G. D., Linnane A. W. In vivo differentiation of yeast cytoplasmic and mitochondrial protein synthesis with antibiotics. Biochem Biophys Res Commun. 1966 Oct 5;25(1):8–13. doi: 10.1016/0006-291x(66)90631-0. [DOI] [PubMed] [Google Scholar]
- Downing J. F., Burrows L. S., Bard M. The isolation of two mutants of Saccharomyces cerevisiae which demonstrate increased activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Biochem Biophys Res Commun. 1980 Jun 16;94(3):974–979. doi: 10.1016/0006-291x(80)91330-3. [DOI] [PubMed] [Google Scholar]
- Field R. B., Holmlund C. E. Isolation of 2,3;22,23-dioxidosqualene and 24,25-oxidolanosterol from yeast. Arch Biochem Biophys. 1977 Apr 30;180(2):465–471. doi: 10.1016/0003-9861(77)90061-3. [DOI] [PubMed] [Google Scholar]
- Fung B., Holmlund C. E. Effect of triparanol and 3beta-(beta-dimethyl-aminoethoxy)-androst-5-en-17-one on growth and non-saponifiable lipids of Saccharomyces cerevisiae. Biochem Pharmacol. 1976 Jun 1;25(11):1249–1254. doi: 10.1016/0006-2952(76)90086-1. [DOI] [PubMed] [Google Scholar]
- Gollub E. G., Liu K. P., Dayan J., Adlersberg M., Sprinson D. B. Yeast mutants deficient in heme biosynthesis and a heme mutant additionally blocked in cyclization of 2,3-oxidosqualene. J Biol Chem. 1977 May 10;252(9):2846–2854. [PubMed] [Google Scholar]
- Hata S., Nishino T., Komori M., Katsuki H. Involvement of cytochrome P-450 in delta 22-desaturation in ergosterol biosynthesis of yeast. Biochem Biophys Res Commun. 1981 Nov 16;103(1):272–277. doi: 10.1016/0006-291x(81)91689-2. [DOI] [PubMed] [Google Scholar]
- Kawaguchi A. Control of ergosterol biosynthesis in yeast. Existence of lipid inhibitors. J Biochem. 1970 Feb;67(2):219–227. doi: 10.1093/oxfordjournals.jbchem.a129245. [DOI] [PubMed] [Google Scholar]
- Lewis T. A., Taylor F. R., Parks L. W. Involvement of heme biosynthesis in control of sterol uptake by Saccharomyces cerevisiae. J Bacteriol. 1985 Jul;163(1):199–207. doi: 10.1128/jb.163.1.199-207.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lorenz R. T., Rodriguez R. J., Lewis T. A., Parks L. W. Characteristics of sterol uptake in Saccharomyces cerevisiae. J Bacteriol. 1986 Sep;167(3):981–985. doi: 10.1128/jb.167.3.981-985.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molzahn S. W., Woods R. A. Polyene resistance and the isolation of sterol mutants in Saccharomyces cerevisiae. J Gen Microbiol. 1972 Sep;72(2):339–348. doi: 10.1099/00221287-72-2-339. [DOI] [PubMed] [Google Scholar]
- Parks L. W., Bottema C. D., Rodriguez R. J., Lewis T. A. Yeast sterols: yeast mutants as tools for the study of sterol metabolism. Methods Enzymol. 1985;111:333–346. doi: 10.1016/s0076-6879(85)11020-7. [DOI] [PubMed] [Google Scholar]
- Pinto W. J., Lozano R., Nes W. R. Inhibition of sterol biosynthesis by ergosterol and cholesterol in Saccharomyces cerevisiae. Biochim Biophys Acta. 1985 Aug 22;836(1):89–95. doi: 10.1016/0005-2760(85)90224-3. [DOI] [PubMed] [Google Scholar]
- Reddy V. V., Kupfer D., Caspi E. Mechanism of C-5 double bond introduction in the biosynthesis of cholesterol by rat liver microsomes. J Biol Chem. 1977 May 10;252(9):2797–2801. [PubMed] [Google Scholar]
- Rodriguez R. J., Parks L. W. Application of high-performance liquid chromatographic separation of free sterols to the screening of yeast sterol mutants. Anal Biochem. 1982 Jan 1;119(1):200–204. doi: 10.1016/0003-2697(82)90686-8. [DOI] [PubMed] [Google Scholar]
- Rodwell V. W., Nordstrom J. L., Mitschelen J. J. Regulation of HMG-CoA reductase. Adv Lipid Res. 1976;14:1–74. doi: 10.1016/b978-0-12-024914-5.50008-5. [DOI] [PubMed] [Google Scholar]
- Taylor F. R., Parks L. W. Adaptation of Saccharomyces cerevisiae to growth on cholesterol: selection of mutants defective in the formation of lanosterol. Biochem Biophys Res Commun. 1980 Aug 29;95(4):1437–1445. doi: 10.1016/s0006-291x(80)80058-1. [DOI] [PubMed] [Google Scholar]
- Taylor F. R., Parks L. W. An assessment of the specificity of sterol uptake and esterification in Saccharomyces cerevisiae. J Biol Chem. 1981 Dec 25;256(24):13048–13054. [PubMed] [Google Scholar]
- Taylor F. R., Parks L. W. Metabolic interconversion of free sterols and steryl esters in Saccharomyces cerevisiae. J Bacteriol. 1978 Nov;136(2):531–537. doi: 10.1128/jb.136.2.531-537.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trocha P. J., Sprinson D. B. Location and regulation of early enzymes of sterol biosynthesis in yeast. Arch Biochem Biophys. 1976 May;174(1):45–51. doi: 10.1016/0003-9861(76)90322-2. [DOI] [PubMed] [Google Scholar]
