Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1987 Aug;169(8):3707–3711. doi: 10.1128/jb.169.8.3707-3711.1987

Regulation of ergosterol biosynthesis and sterol uptake in a sterol-auxotrophic yeast.

R T Lorenz, L W Parks
PMCID: PMC212455  PMID: 3301810

Abstract

Inhibition of sterol uptake in Saccharomyces cerevisiae sterol auxotroph FY3 (alpha hem1 erg7 ura) by delta-aminolevulinic acid (ALA) is dependent on the ability of the organism to synthesize heme from ALA. Sterol-depleted cells not exposed to ALA or strain PFY3 cells, with a double heme mutation, exposed to ALA did not exhibit inhibition of sterol uptake. Addition of ALA to sterol-depleted FY3 stimulated production of a high endogenous concentration of 2,3-oxidosqualene (25.55 micrograms mg-1 [dry weight]) at 24 h, whereas FY3 not exposed to ALA or PFY3 exposed to ALA did not accumulate 2,3-oxidosqualene. The high concentration of 2,3-oxidosqualene in FY3 with ALA decreased, and 2,3;22,23-dioxidosqualene increased to a very high level. The elevation of 2,3-oxidosqualene by ALA was correlated with a fivefold increase in the activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (EC 1.1.1.34). The enhanced activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase was prevented by cycloheximide but not chloramphenicol and was dependent on a fermentative energy source. Inhibition of sterol uptake could not be attributed to 2,3-oxidosqualene or 2,3;22,23-dioxidosqualene but was due to a nonsaturating level of ergosterol produced as a consequence of heme competency through a leaky erg7 mutation.

Full text

PDF
3707

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Astin A. M., Haslam J. M. The manipulation of cellular cytochrome and lipid composition in a haem mutant of Saccharomyces cerevisiae. Biochem J. 1977 Aug 15;166(2):275–285. doi: 10.1042/bj1660275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bard M., Woods R. A., Haslam J. M. Porphyrine mutants of Saccharomyces cerevisiae: correlated lesions in sterol and fatty acid biosynthesis. Biochem Biophys Res Commun. 1974 Jan 23;56(2):324–330. doi: 10.1016/0006-291x(74)90845-6. [DOI] [PubMed] [Google Scholar]
  3. Berndt J., Boll M., Löwel M., Gaumert R. Regulation of sterol biosynthesis in yeast: induction of 3-hydroxy-3-methylglutaryl-CoA reductase by glucose. Biochem Biophys Res Commun. 1973 Apr 16;51(4):843–848. doi: 10.1016/0006-291x(73)90003-x. [DOI] [PubMed] [Google Scholar]
  4. Boll M., Löwel M., Berndt J. Effect of unsaturated fatty acids on sterol biosynthesis in yeast. Biochim Biophys Acta. 1980 Dec 5;620(3):429–439. doi: 10.1016/0005-2760(80)90134-4. [DOI] [PubMed] [Google Scholar]
  5. Boll M., Löwel M., Still J., Berndt J. Sterol biosynthesis in yeast. 3-Hydorxy-3-methylglutaryl-Coenzyme A reductase as a regulatory enzyme. Eur J Biochem. 1975 Jun;54(2):435–444. doi: 10.1111/j.1432-1033.1975.tb04154.x. [DOI] [PubMed] [Google Scholar]
  6. Buttke T. M., Pyle A. L. Effects of unsaturated fatty acid deprivation on neutral lipid synthesis in Saccharomyces cerevisiae. J Bacteriol. 1982 Nov;152(2):747–756. doi: 10.1128/jb.152.2.747-756.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clark-Walker G. D., Linnane A. W. In vivo differentiation of yeast cytoplasmic and mitochondrial protein synthesis with antibiotics. Biochem Biophys Res Commun. 1966 Oct 5;25(1):8–13. doi: 10.1016/0006-291x(66)90631-0. [DOI] [PubMed] [Google Scholar]
  8. Downing J. F., Burrows L. S., Bard M. The isolation of two mutants of Saccharomyces cerevisiae which demonstrate increased activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Biochem Biophys Res Commun. 1980 Jun 16;94(3):974–979. doi: 10.1016/0006-291x(80)91330-3. [DOI] [PubMed] [Google Scholar]
  9. Field R. B., Holmlund C. E. Isolation of 2,3;22,23-dioxidosqualene and 24,25-oxidolanosterol from yeast. Arch Biochem Biophys. 1977 Apr 30;180(2):465–471. doi: 10.1016/0003-9861(77)90061-3. [DOI] [PubMed] [Google Scholar]
  10. Fung B., Holmlund C. E. Effect of triparanol and 3beta-(beta-dimethyl-aminoethoxy)-androst-5-en-17-one on growth and non-saponifiable lipids of Saccharomyces cerevisiae. Biochem Pharmacol. 1976 Jun 1;25(11):1249–1254. doi: 10.1016/0006-2952(76)90086-1. [DOI] [PubMed] [Google Scholar]
  11. Gollub E. G., Liu K. P., Dayan J., Adlersberg M., Sprinson D. B. Yeast mutants deficient in heme biosynthesis and a heme mutant additionally blocked in cyclization of 2,3-oxidosqualene. J Biol Chem. 1977 May 10;252(9):2846–2854. [PubMed] [Google Scholar]
  12. Hata S., Nishino T., Komori M., Katsuki H. Involvement of cytochrome P-450 in delta 22-desaturation in ergosterol biosynthesis of yeast. Biochem Biophys Res Commun. 1981 Nov 16;103(1):272–277. doi: 10.1016/0006-291x(81)91689-2. [DOI] [PubMed] [Google Scholar]
  13. Kawaguchi A. Control of ergosterol biosynthesis in yeast. Existence of lipid inhibitors. J Biochem. 1970 Feb;67(2):219–227. doi: 10.1093/oxfordjournals.jbchem.a129245. [DOI] [PubMed] [Google Scholar]
  14. Lewis T. A., Taylor F. R., Parks L. W. Involvement of heme biosynthesis in control of sterol uptake by Saccharomyces cerevisiae. J Bacteriol. 1985 Jul;163(1):199–207. doi: 10.1128/jb.163.1.199-207.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lorenz R. T., Rodriguez R. J., Lewis T. A., Parks L. W. Characteristics of sterol uptake in Saccharomyces cerevisiae. J Bacteriol. 1986 Sep;167(3):981–985. doi: 10.1128/jb.167.3.981-985.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Molzahn S. W., Woods R. A. Polyene resistance and the isolation of sterol mutants in Saccharomyces cerevisiae. J Gen Microbiol. 1972 Sep;72(2):339–348. doi: 10.1099/00221287-72-2-339. [DOI] [PubMed] [Google Scholar]
  17. Parks L. W., Bottema C. D., Rodriguez R. J., Lewis T. A. Yeast sterols: yeast mutants as tools for the study of sterol metabolism. Methods Enzymol. 1985;111:333–346. doi: 10.1016/s0076-6879(85)11020-7. [DOI] [PubMed] [Google Scholar]
  18. Pinto W. J., Lozano R., Nes W. R. Inhibition of sterol biosynthesis by ergosterol and cholesterol in Saccharomyces cerevisiae. Biochim Biophys Acta. 1985 Aug 22;836(1):89–95. doi: 10.1016/0005-2760(85)90224-3. [DOI] [PubMed] [Google Scholar]
  19. Reddy V. V., Kupfer D., Caspi E. Mechanism of C-5 double bond introduction in the biosynthesis of cholesterol by rat liver microsomes. J Biol Chem. 1977 May 10;252(9):2797–2801. [PubMed] [Google Scholar]
  20. Rodriguez R. J., Parks L. W. Application of high-performance liquid chromatographic separation of free sterols to the screening of yeast sterol mutants. Anal Biochem. 1982 Jan 1;119(1):200–204. doi: 10.1016/0003-2697(82)90686-8. [DOI] [PubMed] [Google Scholar]
  21. Rodwell V. W., Nordstrom J. L., Mitschelen J. J. Regulation of HMG-CoA reductase. Adv Lipid Res. 1976;14:1–74. doi: 10.1016/b978-0-12-024914-5.50008-5. [DOI] [PubMed] [Google Scholar]
  22. Taylor F. R., Parks L. W. Adaptation of Saccharomyces cerevisiae to growth on cholesterol: selection of mutants defective in the formation of lanosterol. Biochem Biophys Res Commun. 1980 Aug 29;95(4):1437–1445. doi: 10.1016/s0006-291x(80)80058-1. [DOI] [PubMed] [Google Scholar]
  23. Taylor F. R., Parks L. W. An assessment of the specificity of sterol uptake and esterification in Saccharomyces cerevisiae. J Biol Chem. 1981 Dec 25;256(24):13048–13054. [PubMed] [Google Scholar]
  24. Taylor F. R., Parks L. W. Metabolic interconversion of free sterols and steryl esters in Saccharomyces cerevisiae. J Bacteriol. 1978 Nov;136(2):531–537. doi: 10.1128/jb.136.2.531-537.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Trocha P. J., Sprinson D. B. Location and regulation of early enzymes of sterol biosynthesis in yeast. Arch Biochem Biophys. 1976 May;174(1):45–51. doi: 10.1016/0003-9861(76)90322-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES