Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1991 Dec;173(24):7790–7801. doi: 10.1128/jb.173.24.7790-7801.1991

13C nuclear magnetic resonance and gas chromatography-mass spectrometry studies of carbon metabolism in the actinomycin D producer Streptomyces parvulus by use of 13C-labeled precursors.

L Inbar 1, A Lapidot 1
PMCID: PMC212569  PMID: 1744035

Abstract

Fructose and glutamate metabolism was monitored in cell suspensions of streptomyces parvulus by 13C nuclear magnetic resonance. The experiments were performed for cells grown with various 13C sources in a growth medium containing D-[U-13C]fructose, L-[13C]glutamate, or L-[U-13C]aspartate and with nonlabeled precursors to compare intracellular pools in S. parvulus cells at different periods of the cell life cycle. The transport of fructose into the cells was biphasic in nature; during rapid transport, mannitol, fructose, and glucose 6-phosphate were accumulated intracellularly, whereas during the passive diffusion of fructose, the intracellular carbohydrate pool comprised mainly trehalose (1,1'-alpha-alpha-D-glucose). The regulation of fructokinase activity by the intracellular intermediates may play an important role in fructose catabolism in S. parvulus. Transaldolase activity in S. parvulus was determined from the 13C nuclear magnetic resonance labeling pattern of trehalose carbons obtained from cells grown in medium containing either L-[U-13C]aspartate or L-[U-13C]glutamate. Only carbons 4, 5, and 6 of the disaccharide were labeled. Isotopomer analysis of the trehalose carbons led us to conclude that the flux through the reverse glycolytic pathway, condensation of glyceraldehyde 3-phosphate with dihydroxyacetone phosphate, makes at best a minor contribution to the 13C-labeled glucose units observed in trehalose. The pentose pathway and transaldolase activity can explain the labeling pattern of 4,5,6-13C3 of trehalose. Moreover, the transfer of the 13C label of L-[U-13C]aspartate into the different isotopomers of trehalose C4, C5, and C6 by the transaldolase activity allowed us to calculate the relative fluxes from oxaloacetate via gluconeogenesis and through the tricarboxylic acid cycle. The ratio of the two fluxes is approximately 1. However, the main carbon source for trehalose synthesis in S. parvulus is fructose and not glutamate or aspartate. The 13C enrichment and isotopomer population, measured by nuclear magnetic resonance and gas chromatography-mass spectrometry, of the actinomycin D peptide ring enabled us to specify the origins of the five amino acids of actinomycin D. Threonine and proline exhibited isotopomer populations similar to that of the extracellular L-[13C]glutamate, indicating that protein catabolism is the origin of their 13C label, whereas the isotopomer populations of sarcosine and N-methylvaline were similar to those of the new intracellular pool of S. parvulus that originated from D-[U-13C]fructose during the production of actinomycin D.

Full text

PDF
7790

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cortés J., Liras P., Castro J. M., Martín J. F. Glucose regulation of cephamycin biosynthesis in Streptomyces lactamdurans is exerted on the formation of alpha-aminoadipyl-cysteinyl-valine and deacetoxycephalosporin C synthase. J Gen Microbiol. 1986 Jul;132(7):1805–1814. doi: 10.1099/00221287-132-7-1805. [DOI] [PubMed] [Google Scholar]
  2. Dijkema C., Kester H. C., Visser J. 13C NMR studies of carbon metabolism in the hyphal fungus Aspergillus nidulans. Proc Natl Acad Sci U S A. 1985 Jan;82(1):14–18. doi: 10.1073/pnas.82.1.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Drew S. W., Demain A. L. Effect of primary metabolites on secondary metabolism. Annu Rev Microbiol. 1977;31:343–356. doi: 10.1146/annurev.mi.31.100177.002015. [DOI] [PubMed] [Google Scholar]
  4. Gopher A., Vaisman N., Mandel H., Lapidot A. Determination of fructose metabolic pathways in normal and fructose-intolerant children: a 13C NMR study using [U-13C]fructose. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5449–5453. doi: 10.1073/pnas.87.14.5449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Haese A., Keller U. Genetics of actinomycin C production in Streptomyces chrysomallus. J Bacteriol. 1988 Mar;170(3):1360–1368. doi: 10.1128/jb.170.3.1360-1368.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Haran N., Kahana Z. E., Lapidot A. In vivo 15N NMR studies of regulation of nitrogen assimilation and amino acid production by Brevibacterium lactofermentum. J Biol Chem. 1983 Nov 10;258(21):12929–12933. [PubMed] [Google Scholar]
  7. Inbar L., Kahana Z. E., Lapidot A. Natural-abundance 13C nuclear magnetic resonance studies of regulation and overproduction of L-lysine by Brevibacterium flavum. Eur J Biochem. 1985 Jun 18;149(3):601–607. doi: 10.1111/j.1432-1033.1985.tb08967.x. [DOI] [PubMed] [Google Scholar]
  8. Inbar L., Lapidot A. 13C-NMR, 1H-NMR and gas-chromatography mass-spectrometry studies of the biosynthesis of 13C-enriched L-lysine by Brevibacterium flavum. Eur J Biochem. 1987 Feb 2;162(3):621–633. doi: 10.1111/j.1432-1033.1987.tb10684.x. [DOI] [PubMed] [Google Scholar]
  9. Inbar L., Lapidot A. Metabolic regulation in Streptomyces parvulus during actinomycin D synthesis, studied with 13C- and 15N-labeled precursors by 13C and 15N nuclear magnetic resonance spectroscopy and by gas chromatography-mass spectrometry. J Bacteriol. 1988 Sep;170(9):4055–4064. doi: 10.1128/jb.170.9.4055-4064.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Inbar L., Lapidot A. The structure and biosynthesis of new tetrahydropyrimidine derivatives in actinomycin D producer Streptomyces parvulus. Use of 13C- and 15N-labeled L-glutamate and 13C and 15N NMR spectroscopy. J Biol Chem. 1988 Nov 5;263(31):16014–16022. [PubMed] [Google Scholar]
  11. Jones G. H. Actinomycin synthesis in Streptomyces antibioticus: enzymatic conversion of 3-hydroxyanthranilic acid to 4-methyl-3-hydroxyanthranilic acid. J Bacteriol. 1987 Dec;169(12):5575–5578. doi: 10.1128/jb.169.12.5575-5578.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jones G. H., Hopwood D. A. Molecular cloning and expression of the phenoxazinone synthase gene from Streptomyces antibioticus. J Biol Chem. 1984 Nov 25;259(22):14151–14157. [PubMed] [Google Scholar]
  13. Jones G. H. Regulation of phenoxazinone synthase expression in Streptomyces antibioticus. J Bacteriol. 1985 Sep;163(3):1215–1221. doi: 10.1128/jb.163.3.1215-1221.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Juretschke H. P., Lapidot A. Actinomycin D, 1H NMR studies on intramolecular interactions and on the planarity of the chromophore. Eur J Biochem. 1984 Sep 17;143(3):651–658. doi: 10.1111/j.1432-1033.1984.tb08418.x. [DOI] [PubMed] [Google Scholar]
  15. Juretschke H. P., Lapidot A. Intramolecular interactions, mesomerism and dynamics in actinomycin D studied by 15N NMR spectroscopy. Eur J Biochem. 1985 Mar 1;147(2):313–324. doi: 10.1111/j.1432-1033.1985.tb08752.x. [DOI] [PubMed] [Google Scholar]
  16. Kalderon B., Gopher A., Lapidot A. Metabolic pathways leading to liver glycogen repletion in vivo, studied by GC-MS and NMR. FEBS Lett. 1986 Aug 11;204(1):29–32. doi: 10.1016/0014-5793(86)81381-3. [DOI] [PubMed] [Google Scholar]
  17. Kalderon B., Korman S. H., Gutman A., Lapidot A. Estimation of glucose carbon recycling in children with glycogen storage disease: A 13C NMR study using [U-13C]glucose. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4690–4694. doi: 10.1073/pnas.86.12.4690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Keller U. Actinomycin synthetases. Multifunctional enzymes responsible for the synthesis of the peptide chains of actinomycin. J Biol Chem. 1987 Apr 25;262(12):5852–5856. [PubMed] [Google Scholar]
  19. Keller U., Kleinkauf H., Zocher R. 4-Methyl-3-hydroxyanthranilic acid activating enzyme from actinomycin-producing Streptomyces chrysomallus. Biochemistry. 1984 Mar 27;23(7):1479–1484. doi: 10.1021/bi00302a022. [DOI] [PubMed] [Google Scholar]
  20. Lapidot A. Inherited disorders of carbohydrate metabolism in children studied by 13C-labelled precursors, NMR and GC-MS. J Inherit Metab Dis. 1990;13(4):466–475. doi: 10.1007/BF01799504. [DOI] [PubMed] [Google Scholar]
  21. Lapidot A., Irving C. S. Comparative in vivo nitrogen-15 nuclear magnetic resonance study of the cell wall components of five Gram-positive bacteria. Biochemistry. 1979 Feb 20;18(4):704–714. doi: 10.1021/bi00571a024. [DOI] [PubMed] [Google Scholar]
  22. Lapidot A., Irving C. S. Dynamic structure of whole cells probed by nuclear Overhauser enhanced nitrogen-15 nuclear magnetic resonance spectroscopy. Proc Natl Acad Sci U S A. 1977 May;74(5):1988–1992. doi: 10.1073/pnas.74.5.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lapidot A., Irving C. S. Nitrogen-15 and carbon-13 dynamic nuclear magnetic resonance study of chain segmental motion of the peptidoglycan pentaglycine chain of 15N-Gly- and 13C2-Gly-labeled Staphylococcus aureus cells and isolated cell walls. Biochemistry. 1979 May 1;18(9):1788–1796. doi: 10.1021/bi00576a024. [DOI] [PubMed] [Google Scholar]
  24. London R. E., Walker T. E. Biosynthesis of trehalose by Brevibacterium flavum: use of long range 13C-13C coupling data to characterize triose phosphate isomerase activity. Biosci Rep. 1985 Jun;5(6):509–515. doi: 10.1007/BF01116950. [DOI] [PubMed] [Google Scholar]
  25. Malpartida F., Hopwood D. A. Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host. 1984 May 31-Jun 6Nature. 309(5967):462–464. doi: 10.1038/309462a0. [DOI] [PubMed] [Google Scholar]
  26. Martín M. F., Liras P. Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. Annu Rev Microbiol. 1989;43:173–206. doi: 10.1146/annurev.mi.43.100189.001133. [DOI] [PubMed] [Google Scholar]
  27. Troost T., Hitchcock M. J., Katz E. Distinct kynureninase and hydroxykynureninase enzymes in an actinomycin-producing strain of Streptomyces parvulus. Biochim Biophys Acta. 1980 Mar 14;612(1):97–106. doi: 10.1016/0005-2744(80)90282-x. [DOI] [PubMed] [Google Scholar]
  28. den Hollander J. A., Ugurbil K., Brown T. R., Bednar M., Redfield C., Shulman R. G. Studies of anaerobic and aerobic glycolysis in Saccharomyces cerevisiae. Biochemistry. 1986 Jan 14;25(1):203–211. doi: 10.1021/bi00349a029. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES