Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1986 Jul;167(1):238–242. doi: 10.1128/jb.167.1.238-242.1986

Methyl sterol and cyclopropane fatty acid composition of Methylococcus capsulatus grown at low oxygen tensions.

L L Jahnke, P D Nichols
PMCID: PMC212866  PMID: 3087955

Abstract

Methylococcus capsulatus contained extensive intracytoplasmic membranes when grown in fed-batch cultures over a wide range of oxygen tensions (0.1 to 10.6%, vol/vol) and at a constant methane level. Although the biomass decreased as oxygen levels were lowered, consistently high amounts of phospholipid and methyl sterol were synthesized. The greatest amounts of sterol and phospholipid were found in cells grown between 0.5 and 1.1% oxygen (7.2 and 203 mumol/g [dry weight], respectively). While sterol was still synthesized in significant amounts in cells grown at 0.1% oxygen, the major sterol product was the dimethyl form. Analysis by capillary gas chromatography-mass spectrophotometry showed that the phospholipid esterified fatty acids were predominantly 16:0 and 16:1 and that the hexadecenoates consisted of cis delta 9, delta 10, and delta 11 isomers. At low oxygen tensions, the presence of large amounts (25%) of cyclopropane fatty acids (cy 17:0) with the methylene groups at the delta 9, delta 10, and delta 11 positions was detected. Although the delta 9 monoenoic isomer was predominant, growth at low oxygen levels enhanced the synthesis of the delta 10 isomers of 16:1 and cy 17:0. As the oxygen level was increased, the amount of cyclopropanes decreased, such that only a trace of cy 17:0 could be detected in cells grown at 10.6% oxygen. Although M. capsulatus grew at very low oxygen tensions, this growth was accompanied by changes in the membrane lipids.

Full text

PDF
238

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bird C. W., Lynch J. M., Pirt F. J., Reid W. W. Steroids and squalene in Methylococcus capsulatus grown on methane. Nature. 1971 Apr 16;230(5294):473–474. doi: 10.1038/230473a0. [DOI] [PubMed] [Google Scholar]
  2. Bloch K. E. Sterol structure and membrane function. CRC Crit Rev Biochem. 1983;14(1):47–92. doi: 10.3109/10409238309102790. [DOI] [PubMed] [Google Scholar]
  3. Bouvier P., Rohmer M., Benveniste P., Ourisson G. Delta8(14)-steroids in the bacterium Methylococcus capsulatus. Biochem J. 1976 Nov;159(2):267–271. doi: 10.1042/bj1590267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davies S. L., Whittenbury R. Fine structure of methane and other hydrocarbon-utilizing bacteria. J Gen Microbiol. 1970 May;61(2):227–232. doi: 10.1099/00221287-61-2-227. [DOI] [PubMed] [Google Scholar]
  5. Fulco A. J. Metabolic alterations of fatty acids. Annu Rev Biochem. 1974;43(0):215–241. doi: 10.1146/annurev.bi.43.070174.001243. [DOI] [PubMed] [Google Scholar]
  6. Goldberg I., Jensen A. P. Phospholipid and fatty acid composition of methanol-utilizing bacteria. J Bacteriol. 1977 Apr;130(1):535–537. doi: 10.1128/jb.130.1.535-537.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hagen P. O., Goldfine H., Williams P. J. Phospholipids of bacteria with extensive intracytoplasmic membranes. Science. 1966 Mar 25;151(3717):1543–1544. doi: 10.1126/science.151.3717.1543. [DOI] [PubMed] [Google Scholar]
  8. Higgins I. J., Best D. J., Hammond R. C., Scott D. Methane-oxidizing microorganisms. Microbiol Rev. 1981 Dec;45(4):556–590. doi: 10.1128/mr.45.4.556-590.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hyder S. L., Meyers A., Cayer M. L. Membrane modulation in a methylotrophic bacterium Methylococcus capsulatus (Texas) as a function of growth substrate. Tissue Cell. 1979;11(4):597–610. doi: 10.1016/0040-8166(79)90017-x. [DOI] [PubMed] [Google Scholar]
  10. Jahnke L., Klein H. P. Oxygen as a factor in eukaryote evolution: some effects of low levels of oxygen on Saccharomyces cerevisiae. Orig Life. 1979 Sep;9(4):329–334. doi: 10.1007/BF00926825. [DOI] [PubMed] [Google Scholar]
  11. Jahnke L., Klein H. P. Oxygen requirements for formation and activity of the squalene epoxidase in Saccharomyces cerevisiae. J Bacteriol. 1983 Aug;155(2):488–492. doi: 10.1128/jb.155.2.488-492.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Macdonald P. M., Sykes B. D., McElhaney R. N. Fluorine-19 nuclear magnetic resonance studies of lipid fatty acyl chain order and dynamics in Acholeplasma laidlawii B membranes. A direct comparison of the effects of cis and trans cyclopropane ring and double-bond substituents on orientational order. Biochemistry. 1985 Aug 13;24(17):4651–4659. doi: 10.1021/bi00338a026. [DOI] [PubMed] [Google Scholar]
  13. Makula R. A. Phospholipid composition of methane-utilizing bacteria. J Bacteriol. 1978 Jun;134(3):771–777. doi: 10.1128/jb.134.3.771-777.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Marinari L. A., Goldfine H., Panos C. Specificity of cyclopropane fatty acid synthesis in Escherichia coli. Utilization of isomers of monounsaturated fatty acids. Biochemistry. 1974 Apr 23;13(9):1978–1983. doi: 10.1021/bi00706a030. [DOI] [PubMed] [Google Scholar]
  15. Ohlrogge J. B., Gunstone F. D., Ismail I. A., Lands W. E. Positional specificity of cyclopropane ring formation from cis-octadecenoic acid isomers in Escherichia coli. Biochim Biophys Acta. 1976 May 27;431(2):257–267. doi: 10.1016/0005-2760(76)90146-6. [DOI] [PubMed] [Google Scholar]
  16. Patt T. E., Hanson R. S. Intracytoplasmic membrane, phospholipid, and sterol content of Methylobacterium organophilum cells grown under different conditions. J Bacteriol. 1978 May;134(2):636–644. doi: 10.1128/jb.134.2.636-644.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rilfors L., Wieslander A., Ståhl S. Lipid and protein composition of membranes of Bacillus megaterium variants in the temperature range 5 to 70 degrees C. J Bacteriol. 1978 Sep;135(3):1043–1052. doi: 10.1128/jb.135.3.1043-1052.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rohmer M., Bouvier P., Ourisson G. Molecular evolution of biomembranes: structural equivalents and phylogenetic precursors of sterols. Proc Natl Acad Sci U S A. 1979 Feb;76(2):847–851. doi: 10.1073/pnas.76.2.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rohmer M., Bouvier P., Ourisson G. Non-specific lanosterol and hopanoid biosynthesis be a cell-free system from the bacterium Methylococcus capsulatus. Eur J Biochem. 1980 Dec;112(3):557–560. doi: 10.1111/j.1432-1033.1980.tb06121.x. [DOI] [PubMed] [Google Scholar]
  20. Weaver T. L., Patrick M. A., Dugan P. R. Whole-cell and membrane lipids of the methylotrophic bacterium Methylosinus trichosporium. J Bacteriol. 1975 Nov;124(2):602–605. doi: 10.1128/jb.124.2.602-605.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES