Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1986 Aug;167(2):544–550. doi: 10.1128/jb.167.2.544-550.1986

Respiratory systems of the Bacillus cereus mother cell and forespore.

J E Escamilla, R Ramírez, P Del-Arenal, A Aranda
PMCID: PMC212923  PMID: 3090018

Abstract

The respiratory systems of the mother cells and forespores of Bacillus cereus were compared throughout the maturation stages (III to VI) of sporulation. The results indicated that both cell compartments contain the same assortment of oxidoreductases and cytochromes. However membrane fractions from young forespores were clearly distinct from those of the mother cell, i.e., lower content of cytochrome aa3, lower cytochrome c oxidase activity, higher concentration of cytochrome o, and a lower sensitivity of the respiration to the inhibiting effect of cyanide. This suggests that the cyanide-resistant pathway contributes more importantly to forespore respiratory activity than to activity in the mother cell compartment. During the maturation stages, the forespore NADH oxidase activity declined faster than in the mother cells. Other activities studied decreased steadily in both cell compartments. These findings together with the analysis of the kinetics of NADH-dependent reduction of cytochromes in the mature spore membranes indicated an impairment of electron flow between NADH dehydrogenase and cytochrome b. This impairment could be overcome by the addition of menadione.

Full text

PDF
544

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreoli A. J., Suehiro S., Sakiyama D., Takemoto J., Vivanco E., Lara J. C., Klute M. C. Release and recovery of forespores from Bacillus cereus. J Bacteriol. 1973 Sep;115(3):1159–1166. doi: 10.1128/jb.115.3.1159-1166.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dignam S. S., Setlow P. In vivo and in vitro synthesis of the spore-specific proteins A and C of bacillus megaterium. J Biol Chem. 1980 Sep 25;255(18):8417–8423. [PubMed] [Google Scholar]
  3. Escamilla J. E., Benito M. C. Respiratory system of vegetative and sporulating Bacillus cereus. J Bacteriol. 1984 Oct;160(1):473–477. doi: 10.1128/jb.160.1.473-477.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HANSON R. S., SRINIVASAN V. R., HALVORSON H. O. Biochemistry of sporulation. I. Metabolism of acetate by vegetative and sporulating cells. J Bacteriol. 1963 Feb;85:451–460. doi: 10.1128/jb.85.2.451-460.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hogarth C., Wilkinson B. J., Ellar D. J. Cyanide-resistant electron transport in sporulating Bacillus megaterium KM. Biochim Biophys Acta. 1977 Jul 7;461(1):109–123. doi: 10.1016/0005-2728(77)90073-1. [DOI] [PubMed] [Google Scholar]
  6. Klofat W., Picciolo G., Chappelle E. W., Freese E. Production of adenosine triphosphate in normal cells and sporulation mutants of Bacillus subtilis. J Biol Chem. 1969 Jun 25;244(12):3270–3276. [PubMed] [Google Scholar]
  7. Lang D. R., Felix J., Lundgren D. G. Development of a membrane-bound resiratory system prior to and during sporulation in Bacillus cereus and its relationship to membrane structure. J Bacteriol. 1972 Jun;110(3):968–977. doi: 10.1128/jb.110.3.968-977.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. SCHILS D. J., HOVENKAMP H. G., COLPA-BOONSTRA J. P. Studies on menadione reduction and reoxidation with Azotobacter vinelandii. Biochim Biophys Acta. 1960 Sep 9;43:129–131. doi: 10.1016/0006-3002(60)90416-9. [DOI] [PubMed] [Google Scholar]
  10. Setlow B., Setlow P. Levels of acetyl coenzyme A, reduced and oxidized coenzyme A, and coenzyme A in disulfide linkage to protein in dormant and germinated spores and growing and sporulating cells of Bacillus megaterium. J Bacteriol. 1977 Nov;132(2):444–452. doi: 10.1128/jb.132.2.444-452.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Singh R. P., Setlow B., Setlow P. Levels of small molecules and enzymes in the mother cell compartment and the forespore of sporulating Bacillus megaterium. J Bacteriol. 1977 Jun;130(3):1130–1138. doi: 10.1128/jb.130.3.1130-1138.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Smith L. Bacterial cytochromes and their spectral characterization. Methods Enzymol. 1978;53:202–212. doi: 10.1016/s0076-6879(78)53025-5. [DOI] [PubMed] [Google Scholar]
  13. Taber H., Freese E. Sporulation properties of cytochrome a-deficient mutants of Bacillus subtilis. J Bacteriol. 1974 Dec;120(3):1004–1011. doi: 10.1128/jb.120.3.1004-1011.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tochikubo K. Changes in terminal respiratory pathways of Bacillus subtilis during germination, outgrowth and vegetative growth. J Bacteriol. 1971 Nov;108(2):652–661. doi: 10.1128/jb.108.2.652-661.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wilkinson B. J., Ellar D. J. Morphogenesis of the membrane-bound electron-transport system in sporulating Bacillus megaterium KM. Eur J Biochem. 1975 Jun 16;55(1):131–139. doi: 10.1111/j.1432-1033.1975.tb02145.x. [DOI] [PubMed] [Google Scholar]
  16. Wilkinson B. J., Ellar D. J., Scott I. R., Koncewicz M. A. Rapid, chloramphenicol-resistant, activation of membrane electron transport on germination of Bacillus spores. Nature. 1977 Mar 10;266(5598):174–176. doi: 10.1038/266174a0. [DOI] [PubMed] [Google Scholar]
  17. Young M., Mandelstam J. Early events during bacterial endospore formation. Adv Microb Physiol. 1979;20:103-62, 321-3. doi: 10.1016/s0065-2911(08)60207-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES