Skip to main content
The Journal of Hygiene logoLink to The Journal of Hygiene
. 1968 Jun;66(2):273–280. doi: 10.1017/s0022172400041139

Evidence for a two-stage model of microbial infection.

G G Meynell, J Maw
PMCID: PMC2130631  PMID: 4885483

Full text

PDF
273

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armitage P., Meynell G. G., Williams T. Birth-death and other models for microbial infection. Nature. 1965 Aug 7;207(997):570–572. doi: 10.1038/207570a0. [DOI] [PubMed] [Google Scholar]
  2. DEARMON I. A., Jr, LIVELY D. H., ROTH N. G. Survival time as a rapid method of determining virulence with Bacillus anthracis. J Bacteriol. 1956 Nov;72(5):666–672. doi: 10.1128/jb.72.5.666-672.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. ECKERT E. A., BEARD D., BEARD J. W. Dose-response relations in experimental transmission of avian erythromyeloblastic leukosis. I. Host-response to the virus. J Natl Cancer Inst. 1951 Oct;12(2):447–463. [PubMed] [Google Scholar]
  4. ECKERT E. A., BEARD D., BEARD J. W. Dose-response relations in experimental transmission of avian erythromyeloblastic leukosis. III. Titration of the virus. J Natl Cancer Inst. 1954 Apr;14(5):1055–1066. [PubMed] [Google Scholar]
  5. ECKERT E. A., BEARD D., BEARD J. W. Virus of avian erythroblastosis. I. Titration of infectivity. J Natl Cancer Inst. 1956 Apr;16(5):1099–1120. [PubMed] [Google Scholar]
  6. LITCHFIELD J. T., Jr A method for rapid graphic solution of time-per cent effect curves. J Pharmacol Exp Ther. 1949 Dec;97(4):399-408, 3 tab. [PubMed] [Google Scholar]
  7. MACKANESS G. B. Cellular resistance to infection. J Exp Med. 1962 Sep 1;116:381–406. doi: 10.1084/jem.116.3.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. MEYNELL G. G. Interpretation of distributions of individual response times in microbial infections. Nature. 1963 Jun 8;198:970–973. doi: 10.1038/198970b0. [DOI] [PubMed] [Google Scholar]
  9. MEYNELL G. G., MEYNELL E. W. The growth of micro-organisms in vivo with particular reference to the relation between dose and latent period. J Hyg (Lond) 1958 Sep;56(3):323–346. doi: 10.1017/s0022172400037827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. SARTWELL P. E. The distribution of incubation periods of infectious disease. Am J Hyg. 1950 May;51(3):310–318. doi: 10.1093/oxfordjournals.aje.a119397. [DOI] [PubMed] [Google Scholar]
  11. SHORTLEY G., WILKINS J. R. INDEPENDENT-ACTION AND BIRTH-DEATH MODELS IN EXPERIMENTAL MICROBIOLOGY. Bacteriol Rev. 1965 Mar;29:102–141. doi: 10.1128/br.29.1.102-141.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sartwell P. E. The incubation period and the dynamics of infectious disease. Am J Epidemiol. 1966 Mar;83(2):204–206. doi: 10.1093/oxfordjournals.aje.a120576. [DOI] [PubMed] [Google Scholar]
  13. Williams T., Meynell G. G. Time-dependence and count-dependence in microbial infection. Nature. 1967 Apr 29;214(5087):473–475. doi: 10.1038/214473a0. [DOI] [PubMed] [Google Scholar]
  14. Williams T. The distribution of response times in a birth-death process. Biometrika. 1965 Dec;52(3):581–585. [PubMed] [Google Scholar]

Articles from The Journal of Hygiene are provided here courtesy of Cambridge University Press

RESOURCES