Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1990 Sep;172(9):4959–4963. doi: 10.1128/jb.172.9.4959-4963.1990

Uncoupling of transpositional immunity from gamma delta transposition by a mutation at the end of gamma delta.

L A Wiater 1, N D Grindley 1
PMCID: PMC213151  PMID: 2168371

Abstract

The transposon gamma delta, in common with other members of the Tn3 family, confers transpositional immunity, a phenomenon by which plasmids containing a single transposon end show reduced activity as targets for further insertion by the same element. We found that a copy of a mutant delta end, in which the two terminal base pairs (5' GG) were substituted with cytosines, conferred the same degree of immunity as the unaltered delta end. However, a transposon analog with the mutant delta end as its termini could not transpose. These results suggest that the binding of transposase to a site on a target replicon is sufficient to confer immunity and that immunity does not involve subsequent DNA transactions at the bound target site, analogous to the catalytic processes that occur at the transposon ends during transposition.

Full text

PDF
4959

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adzuma K., Mizuuchi K. Interaction of proteins located at a distance along DNA: mechanism of target immunity in the Mu DNA strand-transfer reaction. Cell. 1989 Apr 7;57(1):41–47. doi: 10.1016/0092-8674(89)90170-0. [DOI] [PubMed] [Google Scholar]
  2. Adzuma K., Mizuuchi K. Target immunity of Mu transposition reflects a differential distribution of Mu B protein. Cell. 1988 Apr 22;53(2):257–266. doi: 10.1016/0092-8674(88)90387-x. [DOI] [PubMed] [Google Scholar]
  3. Amemura J., Ichikawa H., Ohtsubo E. Tn3 transposition immunity is conferred by the transposase-binding domain in the terminal inverted-repeat sequence of Tn3. Gene. 1990 Mar 30;88(1):21–24. doi: 10.1016/0378-1119(90)90055-v. [DOI] [PubMed] [Google Scholar]
  4. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene. 1977;2(2):95–113. [PubMed] [Google Scholar]
  5. Darzins A., Kent N. E., Buckwalter M. S., Casadaban M. J. Bacteriophage Mu sites required for transposition immunity. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6826–6830. doi: 10.1073/pnas.85.18.6826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Derbyshire K. M., Hwang L., Grindley N. D. Genetic analysis of the interaction of the insertion sequence IS903 transposase with its terminal inverted repeats. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8049–8053. doi: 10.1073/pnas.84.22.8049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Elledge S. J., Davis R. W. Position and density effects on repression by stationary and mobile DNA-binding proteins. Genes Dev. 1989 Feb;3(2):185–197. doi: 10.1101/gad.3.2.185. [DOI] [PubMed] [Google Scholar]
  8. Friedman D. I. Integration host factor: a protein for all reasons. Cell. 1988 Nov 18;55(4):545–554. doi: 10.1016/0092-8674(88)90213-9. [DOI] [PubMed] [Google Scholar]
  9. Goto N., Mochizuki A., Inagaki Y., Horiuchi S., Tanaka T., Nakaya R. Identification of the DNA sequence required for transposition immunity of the gamma delta sequence. J Bacteriol. 1987 Sep;169(9):4388–4390. doi: 10.1128/jb.169.9.4388-4390.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Guyer M. S. The gamma delta sequence of F is an insertion sequence. J Mol Biol. 1978 Dec 15;126(3):347–365. doi: 10.1016/0022-2836(78)90045-1. [DOI] [PubMed] [Google Scholar]
  11. Hauer B., Shapiro J. A. Control of Tn7 transposition. Mol Gen Genet. 1984;194(1-2):149–158. doi: 10.1007/BF00383510. [DOI] [PubMed] [Google Scholar]
  12. Huisman O., Errada P. R., Signon L., Kleckner N. Mutational analysis of IS10's outside end. EMBO J. 1989 Jul;8(7):2101–2109. doi: 10.1002/j.1460-2075.1989.tb03619.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kans J. A., Casadaban M. J. Nucleotide sequences required for Tn3 transposition immunity. J Bacteriol. 1989 Apr;171(4):1904–1914. doi: 10.1128/jb.171.4.1904-1914.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lee C. H., Bhagwat A., Heffron F. Identification of a transposon Tn3 sequence required for transposition immunity. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6765–6769. doi: 10.1073/pnas.80.22.6765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Leong J. M., Nunes-Düby S., Lesser C. F., Youderian P., Susskind M. M., Landy A. The phi 80 and P22 attachment sites. Primary structure and interaction with Escherichia coli integration host factor. J Biol Chem. 1985 Apr 10;260(7):4468–4477. [PubMed] [Google Scholar]
  16. Maxwell A., Craigie R., Mizuuchi K. B protein of bacteriophage mu is an ATPase that preferentially stimulates intermolecular DNA strand transfer. Proc Natl Acad Sci U S A. 1987 Feb;84(3):699–703. doi: 10.1073/pnas.84.3.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morisato D., Kleckner N. Tn10 transposition and circle formation in vitro. Cell. 1987 Oct 9;51(1):101–111. doi: 10.1016/0092-8674(87)90014-6. [DOI] [PubMed] [Google Scholar]
  18. Reed R. R., Young R. A., Steitz J. A., Grindley N. D., Guyer M. S. Transposition of the Escherichia coli insertion element gamma generates a five-base-pair repeat. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4882–4886. doi: 10.1073/pnas.76.10.4882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Robinson M. K., Bennett P. M., Richmond M. H. Inhibition of TnA translocation by TnA. J Bacteriol. 1977 Jan;129(1):407–414. doi: 10.1128/jb.129.1.407-414.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Surette M. G., Chaconas G. A protein factor which reduces the negative supercoiling requirement in the Mu DNA strand transfer reaction is Escherichia coli integration host factor. J Biol Chem. 1989 Feb 15;264(5):3028–3034. [PubMed] [Google Scholar]
  22. Tsai M. M., Wong R. Y., Hoang A. T., Deonier R. C. Transposition of Tn1000: in vivo properties. J Bacteriol. 1987 Dec;169(12):5556–5562. doi: 10.1128/jb.169.12.5556-5562.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wiater L. A., Grindley N. D. Gamma delta transposase and integration host factor bind cooperatively at both ends of gamma delta. EMBO J. 1988 Jun;7(6):1907–1911. doi: 10.1002/j.1460-2075.1988.tb03024.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wiater L. A., Grindley N. D. Integration host factor increases the transpositional immunity conferred by gamma delta ends. J Bacteriol. 1990 Sep;172(9):4951–4958. doi: 10.1128/jb.172.9.4951-4958.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES