Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1990 Sep;172(9):5119–5129. doi: 10.1128/jb.172.9.5119-5129.1990

Enzymatic formation, stability, and spontaneous reactions of 4-fluoromuconolactone, a metabolite of the bacterial degradation of 4-fluorobenzoate.

M Schlömann 1, P Fischer 1, E Schmidt 1, H J Knackmuss 1
PMCID: PMC213170  PMID: 2394680

Abstract

Enzymatic conversion of 4-fluorocatechol in the simultaneous presence of partially purified preparations of catechol 1,2-dioxygenase from Pseudomonas cepacia and muconate cycloisomerase from Alcaligenes eutrophus 335 yielded a product that was unambiguously identified as (+)-4-fluoromuconolactone [(+)-4-carboxymethyl-4-fluoro-but-2-en-4-olide]. This compound was shown to be the only major product formed from 3-fluoro-cis,cis-muconate by the action of muconate cycloisomerases from A. eutrophus 335, A. eutrophus JMP134, and P. cepacia as well as by the action of dichloromuconate cycloisomerase from A. eutrophus JMP134. This finding implies that dichloromuconate cycloisomerase, like the muconate cycloisomerases, catalyzes primarily a cycloisomerization reaction, which only in the case of chloro- and bromo-substituted substrates is connected to a dehalogenation. 4-Fluoromuconolactone at pH 7 decomposes by spontaneous reactions mainly to maleylacetate, which then decarboxylates to give cis-acetylacrylate. Although significant amounts of an unidentified compound are also formed from the fluorolactone, HF elimination to the two isomeric dienelactones (4-carboxymethylenebut-2-en-4-olides) is negligible. However, all spontaneous reactions proceed so slowly that an enzymatic conversion of 4-fluoromuconolactone must be assumed. Participation of dienelactone hydrolases in this reaction is indicated by their induction during growth of various strains with 4-fluorobenzoate. However, experiments with cell extracts of P. putida A3.12 suggest that at least one other hydrolytic enzyme is able to contribute to 4-fluoromuconolactone conversion. In light of these observations, earlier proposals for a 4-fluorobenzoate degradative pathway are discussed.

Full text

PDF
5119

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldrich T. L., Frantz B., Gill J. F., Kilbane J. J., Chakrabarty A. M. Cloning and complete nucleotide sequence determination of the catB gene encoding cis,cis-muconate lactonizing enzyme. Gene. 1987;52(2-3):185–195. doi: 10.1016/0378-1119(87)90045-x. [DOI] [PubMed] [Google Scholar]
  2. Anderson J. J., Dagley S. Catabolism of aromatic acids in Trichosporon cutaneum. J Bacteriol. 1980 Feb;141(2):534–543. doi: 10.1128/jb.141.2.534-543.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cain R. B., Tranter E. K., Darrah J. A. The utilization of some halogenated aromatic acids by Nocardia. Oxidation and metabolism. Biochem J. 1968 Jan;106(1):211–227. doi: 10.1042/bj1060211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cass A. E., Ribbons D. W., Rossiter J. T., Williams S. R. Biotransformation of aromatic compounds. Monitoring fluorinated analogues by NMR. FEBS Lett. 1987 Aug 17;220(2):353–357. doi: 10.1016/0014-5793(87)80845-1. [DOI] [PubMed] [Google Scholar]
  5. Catelani D., Fiecchi A., Galli E. Dextro-gamma-carboxymethyl-gamma-methyl-delta-alpha-butenolide. A 1,2-ring-fission product of 4-methylcatechol by Pseudomonas desmolyticum. Biochem J. 1971 Jan;121(1):89–92. doi: 10.1042/bj1210089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chapman P. J., Ribbons D. W. Metabolism of resorcinylic compounds by bacteria: alternative pathways for resorcinol catabolism in Pseudomonas putida. J Bacteriol. 1976 Mar;125(3):985–998. doi: 10.1128/jb.125.3.985-998.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clarke K. F., Callely A. G., Livingstone A., Fewson C. A. Metabolism of monofluorobenzoates by Acinetobacter calcoaceticus N.C.I.B. 8250. Formation of monofluorocatechols. Biochim Biophys Acta. 1975 Oct 9;404(2):169–179. doi: 10.1016/0304-4165(75)90323-2. [DOI] [PubMed] [Google Scholar]
  8. Dorn E., Knackmuss H. J. Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. Biochem J. 1978 Jul 15;174(1):73–84. doi: 10.1042/bj1740073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Evans W. C., Smith B. S., Fernley H. N., Davies J. I. Bacterial metabolism of 2,4-dichlorophenoxyacetate. Biochem J. 1971 May;122(4):543–551. doi: 10.1042/bj1220543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Evans W. C., Smith B. S., Moss P., Fernley H. N. Bacterial metabolism of 4-chlorophenoxyacetate. Biochem J. 1971 May;122(4):509–517. doi: 10.1042/bj1220509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gaal A., Neujahr H. Y. Metabolism of phenol and resorcinol in Trichosporon cutaneum. J Bacteriol. 1979 Jan;137(1):13–21. doi: 10.1128/jb.137.1.13-21.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gaunt J. K., Evans W. C. Metabolism of 4-chloro-2-methylphenoxyacetate by a soil pseudomonad. Ring-fission, lactonizing and delactonizing enzymes. Biochem J. 1971 May;122(4):533–542. doi: 10.1042/bj1220533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ghosal D., You I. S. Operon structure and nucleotide homology of the chlorocatechol oxidation genes of plasmids pJP4 and pAC27. Gene. 1989 Nov 30;83(2):225–232. doi: 10.1016/0378-1119(89)90108-x. [DOI] [PubMed] [Google Scholar]
  14. HAYAISHI O., KATAGIRI M., ROTHBERG S. Studies on oxygenases; pyrocatechase. J Biol Chem. 1957 Dec;229(2):905–920. [PubMed] [Google Scholar]
  15. Harper D. B., Blakley E. R. The metabolism of p-fluorobenzoic acid by a Pseudomonas sp. Can J Microbiol. 1971 Aug;17(8):1015–1023. doi: 10.1139/m71-162. [DOI] [PubMed] [Google Scholar]
  16. Kuhm A. E., Schlömann M., Knackmuss H. J., Pieper D. H. Purification and characterization of dichloromuconate cycloisomerase from Alcaligenes eutrophus JMP 134. Biochem J. 1990 Mar 15;266(3):877–883. [PMC free article] [PubMed] [Google Scholar]
  17. Medvedev Iu V., Girfanova T. F., Gridnev V. N. Issledovanie élektroforeticheskikh svoistv populiatsii kletok Escherichia coli metodom mikroélektroforeza. Mikrobiologiia. 1987 Jan-Feb;56(1):145–149. [PubMed] [Google Scholar]
  18. Ngai K. L., Kallen R. G. Enzymes of the beta-ketoadipate pathway in Pseudomonas putida: primary and secondary kinetic and equilibrium deuterium isotope effects upon the interconversion of (+)-muconolactone to cis,cis-muconate catalyzed by cis,cis-muconate cycloisomerase. Biochemistry. 1983 Oct 25;22(22):5231–5236. doi: 10.1021/bi00291a025. [DOI] [PubMed] [Google Scholar]
  19. Ngai K. L., Ornston L. N., Kallen R. G. Enzymes of the beta-ketoadipate pathway in Pseudomonas putida: kinetic and magnetic resonance studies of the cis,cis-muconate cycloisomerase catalyzed reaction. Biochemistry. 1983 Oct 25;22(22):5223–5230. doi: 10.1021/bi00291a024. [DOI] [PubMed] [Google Scholar]
  20. Ornston L. N. The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. 3. Enzymes of the catechol pathway. J Biol Chem. 1966 Aug 25;241(16):3795–3799. [PubMed] [Google Scholar]
  21. Reineke W., Knackmuss H. J. Microbial degradation of haloaromatics. Annu Rev Microbiol. 1988;42:263–287. doi: 10.1146/annurev.mi.42.100188.001403. [DOI] [PubMed] [Google Scholar]
  22. Reineke W., Knackmuss H. J. Microbial metabolism of haloaromatics: isolation and properties of a chlorobenzene-degrading bacterium. Appl Environ Microbiol. 1984 Feb;47(2):395–402. doi: 10.1128/aem.47.2.395-402.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. SISTROM W. R., STANIER R. Y. The mechanism of formation of beta-ketoadipic acid by bacteria. J Biol Chem. 1954 Oct;210(2):821–836. [PubMed] [Google Scholar]
  24. Schlömann M., Schmidt E., Knackmuss H. J. Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria. J Bacteriol. 1990 Sep;172(9):5112–5118. doi: 10.1128/jb.172.9.5112-5118.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schmidt E., Knackmuss H. J. Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. Biochem J. 1980 Oct 15;192(1):339–347. doi: 10.1042/bj1920339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schmidt E., Remberg G., Knackmuss H. J. Chemical structure and biodegradability of halogenated aromatic compounds. Halogenated muconic acids as intermediates. Biochem J. 1980 Oct 15;192(1):331–337. doi: 10.1042/bj1920331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schreiber A., Hellwig M., Dorn E., Reineke W., Knackmuss H. J. Critical Reactions in Fluorobenzoic Acid Degradation by Pseudomonas sp. B13. Appl Environ Microbiol. 1980 Jan;39(1):58–67. doi: 10.1128/aem.39.1.58-67.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Smith A., Tranter E. K., Cain R. B. The utilization of some halogenated aromatic acids by Nocardia. Effects on growth and enzyme induction. Biochem J. 1968 Jan;106(1):203–209. doi: 10.1042/bj1060203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yeh W. K., Shih C., Ornston L. N. Overlapping evolutionary affinities revealed by comparison of amino acid compositions. Proc Natl Acad Sci U S A. 1982 Jun;79(12):3794–3797. doi: 10.1073/pnas.79.12.3794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zeyer J., Wasserfallen A., Timmis K. N. Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway. Appl Environ Microbiol. 1985 Aug;50(2):447–453. doi: 10.1128/aem.50.2.447-453.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES