Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Nov 2;135(4):1179–1191. doi: 10.1083/jcb.135.4.1179

Differential effects of parathyroid hormone fragments on collagen gene expression in chondrocytes

PMCID: PMC2133384  PMID: 8922395

Abstract

The effect of parathyroid hormone (PTH) in vivo after secretion by the parathyroid gland is mediated by bioactive fragments of the molecule. To elucidate their possible role in the regulation of cartilage matrix metabolism, the influence of the amino-terminal (NH2-terminal), the central, and the carboxyl-terminal (COOH-terminal) portion of the PTH on collagen gene expression was studied in a serum free cell culture system of fetal bovine and human chondrocytes. Expression of alpha1 (I), alpha1 (II), alpha1 (III), and alpha1 (X) mRNA was investigated by in situ hybridization and quantified by Northern blot analysis. NH2- terminal and mid-regional fragments containing a core sequence between amino acid residues 28-34 of PTH induced a significant rise in alpha1 (II) mRNA in proliferating chondrocytes. In addition, the COOH-terminal portion (aa 52-84) of the PTH molecule was shown to exert a stimulatory effect on alpha1 (II) and alpha1 (X) mRNA expression in chondrocytes from the hypertrophic zone of bovine epiphyseal cartilage. PTH peptides harboring either the functional domain in the central or COOH-terminal region of PTH can induce cAMP independent Ca2+ signaling in different subsets of chondrocytes as assessed by microfluorometry of Fura-2/AM loaded cells. These results support the hypothesis that different hormonal effects of PTH on cartilage matrix metabolism are exerted by distinct effector domains and depend on the differentiation stage of the target cell.

Full Text

The Full Text of this article is available as a PDF (3.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abou-Samra A. B., Jüppner H., Force T., Freeman M. W., Kong X. F., Schipani E., Urena P., Richards J., Bonventre J. V., Potts J. T., Jr Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2732–2736. doi: 10.1073/pnas.89.7.2732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aigner T., Bertling W., Stöss H., Weseloh G., von der Mark K. Independent expression of fibril-forming collagens I, II, and III in chondrocytes of human osteoarthritic cartilage. J Clin Invest. 1993 Mar;91(3):829–837. doi: 10.1172/JCI116303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Akisaka T., Kawaguchi H., Subita G. P., Shigenaga Y., Gay C. V. Ultrastructure of matrix vesicles in chick growth plate as revealed by quick freezing and freeze substitution. Calcif Tissue Int. 1988 Jun;42(6):383–393. doi: 10.1007/BF02556357. [DOI] [PubMed] [Google Scholar]
  4. Barling P. M., Bibby N. J. Study of the localization of [3H]bovine parathyroid hormone in bone by light microscope autoradiography. Calcif Tissue Int. 1985 Jul;37(4):441–446. doi: 10.1007/BF02553716. [DOI] [PubMed] [Google Scholar]
  5. Benya P. D., Shaffer J. D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982 Aug;30(1):215–224. doi: 10.1016/0092-8674(82)90027-7. [DOI] [PubMed] [Google Scholar]
  6. Bringhurst F. R., Segre G. V., Lampman G. W., Potts J. T., Jr Metabolism of parathyroid hormone by Kupffer cells: analysis by reverse-phase high-performance liquid chromatography. Biochemistry. 1982 Aug 31;21(18):4252–4258. doi: 10.1021/bi00261a011. [DOI] [PubMed] [Google Scholar]
  7. Capehart A. A., Biddulph D. M. Development of PTH-responsive adenylate cyclase activity during chondrogenesis in cultured mesenchyme from chick limb buds. Calcif Tissue Int. 1991 Jun;48(6):400–406. doi: 10.1007/BF02556453. [DOI] [PubMed] [Google Scholar]
  8. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  9. Choi Y. C., Morris G. M., Lee F. S., Sokoloff L. The effect of serum on monolayer cell culture of mammalian articular chondrocytes. Connect Tissue Res. 1980;7(2):105–112. doi: 10.3109/03008208009152295. [DOI] [PubMed] [Google Scholar]
  10. Civitelli R., Fujimori A., Bernier S. M., Warlow P. M., Goltzman D., Hruska K. A., Avioli L. V. Heterogeneous intracellular free calcium responses to parathyroid hormone correlate with morphology and receptor distribution in osteogenic sarcoma cells. Endocrinology. 1992 Apr;130(4):2392–2400. doi: 10.1210/endo.130.4.1312456. [DOI] [PubMed] [Google Scholar]
  11. Connor J. A. Digital imaging of free calcium changes and of spatial gradients in growing processes in single, mammalian central nervous system cells. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6179–6183. doi: 10.1073/pnas.83.16.6179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Crabb I. D., O'Keefe R. J., Puzas J. E., Rosier R. N. Differential effects of parathyroid hormone on chick growth plate and articular chondrocytes. Calcif Tissue Int. 1992 Jan;50(1):61–66. doi: 10.1007/BF00297299. [DOI] [PubMed] [Google Scholar]
  13. Erba H. P., Gunning P., Kedes L. Nucleotide sequence of the human gamma cytoskeletal actin mRNA: anomalous evolution of vertebrate non-muscle actin genes. Nucleic Acids Res. 1986 Jul 11;14(13):5275–5294. doi: 10.1093/nar/14.13.5275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goltzman D., Goltzmann D., Peytremann A., Callahan E., Tregear G. W., Potts J. T., Jr Analysis of the requirements for parathyroid hormone action in renal membranes with the use of inhibiting analogues. J Biol Chem. 1975 Apr 25;250(8):3199–3203. [PubMed] [Google Scholar]
  15. Grant W. T., Sussman M. D., Balian G. A disulfide-bonded short chain collagen synthesized by degenerative and calcifying zones of bovine growth plate cartilage. J Biol Chem. 1985 Mar 25;260(6):3798–3803. [PubMed] [Google Scholar]
  16. Grummt I., Soellner C., Scholz I. Characterization of a cloned ribosomal fragment from mouse which contains the 18S coding region and adjacent spacer sequences. Nucleic Acids Res. 1979 Apr;6(4):1351–1369. doi: 10.1093/nar/6.4.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  18. Hale J. E., Wuthier R. E. The mechanism of matrix vesicle formation. Studies on the composition of chondrocyte microvilli and on the effects of microfilament-perturbing agents on cellular vesiculation. J Biol Chem. 1987 Feb 5;262(4):1916–1925. [PubMed] [Google Scholar]
  19. Inomata N., Akiyama M., Kubota N., Jüppner H. Characterization of a novel parathyroid hormone (PTH) receptor with specificity for the carboxyl-terminal region of PTH-(1-84) Endocrinology. 1995 Nov;136(11):4732–4740. doi: 10.1210/endo.136.11.7588200. [DOI] [PubMed] [Google Scholar]
  20. Iwamoto M., Jikko A., Murakami H., Shimazu A., Nakashima K., Iwamoto M., Takigawa M., Baba H., Suzuki F., Kato Y. Changes in parathyroid hormone receptors during chondrocyte cytodifferentiation. J Biol Chem. 1994 Jun 24;269(25):17245–17251. [PubMed] [Google Scholar]
  21. Iwamoto M., Shimazu A., Pacifici M. Regulation of chondrocyte maturation by fibroblast growth factor-2 and parathyroid hormone. J Orthop Res. 1995 Nov;13(6):838–845. doi: 10.1002/jor.1100130606. [DOI] [PubMed] [Google Scholar]
  22. Jouishomme H., Whitfield J. F., Chakravarthy B., Durkin J. P., Gagnon L., Isaacs R. J., MacLean S., Neugebauer W., Willick G., Rixon R. H. The protein kinase-C activation domain of the parathyroid hormone. Endocrinology. 1992 Jan;130(1):53–60. doi: 10.1210/endo.130.1.1727720. [DOI] [PubMed] [Google Scholar]
  23. Jüppner H., Abou-Samra A. B., Freeman M., Kong X. F., Schipani E., Richards J., Kolakowski L. F., Jr, Hock J., Potts J. T., Jr, Kronenberg H. M. A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science. 1991 Nov 15;254(5034):1024–1026. doi: 10.1126/science.1658941. [DOI] [PubMed] [Google Scholar]
  24. Kaji H., Sugimoto T., Kanatani M., Miyauchi A., Kimura T., Sakakibara S., Fukase M., Chihara K. Carboxyl-terminal parathyroid hormone fragments stimulate osteoclast-like cell formation and osteoclastic activity. Endocrinology. 1994 Apr;134(4):1897–1904. doi: 10.1210/endo.134.4.8137758. [DOI] [PubMed] [Google Scholar]
  25. Kato Y., Shimazu A., Nakashima K., Suzuki F., Jikko A., Iwamoto M. Effects of parathyroid hormone and calcitonin on alkaline phosphatase activity and matrix calcification in rabbit growth-plate chondrocyte cultures. Endocrinology. 1990 Jul;127(1):114–118. doi: 10.1210/endo-127-1-114. [DOI] [PubMed] [Google Scholar]
  26. Kirsch T., Pfäffle M. Selective binding of anchorin CII (annexin V) to type II and X collagen and to chondrocalcin (C-propeptide of type II collagen). Implications for anchoring function between matrix vesicles and matrix proteins. FEBS Lett. 1992 Sep 28;310(2):143–147. doi: 10.1016/0014-5793(92)81316-e. [DOI] [PubMed] [Google Scholar]
  27. Kirsch T., Wuthier R. E. Stimulation of calcification of growth plate cartilage matrix vesicles by binding to type II and X collagens. J Biol Chem. 1994 Apr 15;269(15):11462–11469. [PubMed] [Google Scholar]
  28. Kirsch T., von der Mark K. Ca2+ binding properties of type X collagen. FEBS Lett. 1991 Dec 2;294(1-2):149–152. doi: 10.1016/0014-5793(91)81363-d. [DOI] [PubMed] [Google Scholar]
  29. Koike T., Iwamoto M., Shimazu A., Nakashima K., Suzuki F., Kato Y. Potent mitogenic effects of parathyroid hormone (PTH) on embryonic chick and rabbit chondrocytes. Differential effects of age on growth, proteoglycan, and cyclic AMP responses of chondrocytes to PTH. J Clin Invest. 1990 Mar;85(3):626–631. doi: 10.1172/JCI114484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kong X. F., Schipani E., Lanske B., Joun H., Karperien M., Defize L. H., Jüppner H., Potts J. T., Jr, Segre G. V., Kronenberg H. M. The rat, mouse and human genes encoding the receptor for parathyroid hormone and parathyroid hormone-related peptide are highly homologous. Biochem Biophys Res Commun. 1994 May 16;200(3):1290–1299. doi: 10.1006/bbrc.1994.1591. [DOI] [PubMed] [Google Scholar]
  31. Lee K., Deeds J. D., Bond A. T., Jüppner H., Abou-Samra A. B., Segre G. V. In situ localization of PTH/PTHrP receptor mRNA in the bone of fetal and young rats. Bone. 1993 May-Jun;14(3):341–345. doi: 10.1016/8756-3282(93)90162-4. [DOI] [PubMed] [Google Scholar]
  32. Lewinson D., Shurtz-Swirski R., Shenzer P., Wingender E., Mayer H., Silbermann M. Structural changes in condylar cartilage following prolonged exposure to the human parathyroid hormone fragment (hPTH) 1-34 in vitro. Cell Tissue Res. 1992 May;268(2):257–266. doi: 10.1007/BF00318794. [DOI] [PubMed] [Google Scholar]
  33. Lewinson D., Silbermann M. Parathyroid hormone stimulates proliferation of chondroprogenitor cells in vitro. Calcif Tissue Int. 1986 Mar;38(3):155–162. doi: 10.1007/BF02556875. [DOI] [PubMed] [Google Scholar]
  34. Lim S. K., Gardella T. J., Baba H., Nussbaum S. R., Kronenberg H. M. The carboxy-terminus of parathyroid hormone is essential for hormone processing and secretion. Endocrinology. 1992 Nov;131(5):2325–2330. doi: 10.1210/endo.131.5.1425431. [DOI] [PubMed] [Google Scholar]
  35. Loveys L. S., Gelb D., Hurwitz S. R., Puzas J. E., Rosier R. N. Effects of parathyroid hormone-related peptide on chick growth plate chondrocytes. J Orthop Res. 1993 Nov;11(6):884–891. doi: 10.1002/jor.1100110615. [DOI] [PubMed] [Google Scholar]
  36. Murray T. M., Rao L. G., Muzaffar S. A., Ly H. Human parathyroid hormone carboxyterminal peptide (53-84) stimulates alkaline phosphatase activity in dexamethasone-treated rat osteosarcoma cells in vitro. Endocrinology. 1989 Feb;124(2):1097–1099. doi: 10.1210/endo-124-2-1097. [DOI] [PubMed] [Google Scholar]
  37. Müller W., Connor J. A. Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses. Nature. 1991 Nov 7;354(6348):73–76. doi: 10.1038/354073a0. [DOI] [PubMed] [Google Scholar]
  38. Potts J. T., Jr, Kronenberg H. M., Rosenblatt M. Parathyroid hormone: chemistry, biosynthesis, and mode of action. Adv Protein Chem. 1982;35:323–396. doi: 10.1016/s0065-3233(08)60471-4. [DOI] [PubMed] [Google Scholar]
  39. Potts J. T., Jr, Tregear G. W., Keutmann H. T., Niall H. D., Sauer R., Deftos L. J., Dawson B. F., Hogan M. L., Aurbach G. D. Synthesis of a biologically active N-terminal tetratriacontapeptide of parathyroid hormone. Proc Natl Acad Sci U S A. 1971 Jan;68(1):63–67. doi: 10.1073/pnas.68.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rao L. G., Murray T. M. Binding of intact parathyroid hormone to rat osteosarcoma cells: major contribution of binding sites for the carboxyl-terminal region of the hormone. Endocrinology. 1985 Oct;117(4):1632–1638. doi: 10.1210/endo-117-4-1632. [DOI] [PubMed] [Google Scholar]
  41. Reichenberger E., Aigner T., von der Mark K., Stöss H., Bertling W. In situ hybridization studies on the expression of type X collagen in fetal human cartilage. Dev Biol. 1991 Dec;148(2):562–572. doi: 10.1016/0012-1606(91)90274-7. [DOI] [PubMed] [Google Scholar]
  42. Rosenblatt M., Segre G. V., Tregear G. W., Shepard G. L., Tyler G. A., Potts J. T., Jr Human parathyroid hormone: synthesis and chemical, biological, and immunological evaluation of the carboxyl-terminal region. Endocrinology. 1978 Sep;103(3):978–984. doi: 10.1210/endo-103-3-978. [DOI] [PubMed] [Google Scholar]
  43. Schipani E., Karga H., Karaplis A. C., Potts J. T., Jr, Kronenberg H. M., Segre G. V., Abou-Samra A. B., Jüppner H. Identical complementary deoxyribonucleic acids encode a human renal and bone parathyroid hormone (PTH)/PTH-related peptide receptor. Endocrinology. 1993 May;132(5):2157–2165. doi: 10.1210/endo.132.5.8386612. [DOI] [PubMed] [Google Scholar]
  44. Schlüter K. D., Hellstern H., Wingender E., Mayer H. The central part of parathyroid hormone stimulates thymidine incorporation of chondrocytes. J Biol Chem. 1989 Jul 5;264(19):11087–11092. [PubMed] [Google Scholar]
  45. Schmid T. M., Linsenmayer T. F. Immunohistochemical localization of short chain cartilage collagen (type X) in avian tissues. J Cell Biol. 1985 Feb;100(2):598–605. doi: 10.1083/jcb.100.2.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Silberberg M., Silberberg R. The Effects of Parathyroid Hormone and Calcium Gluconate on the Skeletal Tissues of Mice. Am J Pathol. 1943 Sep;19(5):839–859. [PMC free article] [PubMed] [Google Scholar]
  47. Silbermann M., Shurtz-Swirski R., Lewinson D., Shenzer P., Mayer H. In vitro response of neonatal condylar cartilage to simultaneous exposure to the parathyroid hormone fragments 1-34, 28-48, and 53-84 hPTH. Calcif Tissue Int. 1991 Apr;48(4):260–266. doi: 10.1007/BF02556377. [DOI] [PubMed] [Google Scholar]
  48. Tregear G. W., Van Rietschoten J., Greene E., Keutmann H. T., Niall H. D., Reit B., Parsons J. A., Potts J. T., Jr Bovine parathyroid hormone: minimum chain length of synthetic peptide required for biological activity. Endocrinology. 1973 Dec;93(6):1349–1353. doi: 10.1210/endo-93-6-1349. [DOI] [PubMed] [Google Scholar]
  49. Tschan T., Höerler I., Houze Y., Winterhalter K. H., Richter C., Bruckner P. Resting chondrocytes in culture survive without growth factors, but are sensitive to toxic oxygen metabolites. J Cell Biol. 1990 Jul;111(1):257–260. doi: 10.1083/jcb.111.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Usdin T. B., Gruber C., Bonner T. I. Identification and functional expression of a receptor selectively recognizing parathyroid hormone, the PTH2 receptor. J Biol Chem. 1995 Jun 30;270(26):15455–15458. doi: 10.1074/jbc.270.26.15455. [DOI] [PubMed] [Google Scholar]
  51. Yamaguchi D. T., Hahn T. J., Iida-Klein A., Kleeman C. R., Muallem S. Parathyroid hormone-activated calcium channels in an osteoblast-like clonal osteosarcoma cell line. cAMP-dependent and cAMP-independent calcium channels. J Biol Chem. 1987 Jun 5;262(16):7711–7718. [PubMed] [Google Scholar]
  52. von der Mark K., Frischholz S., Aigner T., Beier F., Belke J., Erdmann S., Burkhardt H. Upregulation of type X collagen expression in osteoarthritic cartilage. Acta Orthop Scand Suppl. 1995 Oct;266:125–129. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES