Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Nov 2;135(4):1043–1057. doi: 10.1083/jcb.135.4.1043

Preferential MyoD homodimer formation demonstrated by a general method of dominant negative mutation employing fusion with a lysosomal protease

PMCID: PMC2133387  PMID: 8922385

Abstract

We report on a general strategy for engineering dominant negative mutations that, in principle, requires neither extensive structural or functional knowledge of the targeted protein. The approach consists of fusing the lysosomal protease cathepsin B (CB) to a subunit of a multimeric protein. The CB fusion polypeptide can proteolytically digest the multimer and/or detour the multimer from its usual subcellular destination to the lysosome. We first demonstrate the general validity of the approach with CB fusion to E. coli lacZ, encoding tetrameric beta-galactosidase. Cotransfection of NIH 3T3 cells with a vector expressing a CB-lacZ fusion inhibits the beta- galactosidase activity produced by transfection of lacZ alone. We infer that the dominant negative inhibition results from both direct proteolysis of the beta-galactosidase tetramer by the fusion subunit and detour of the tetramer to the lysosome. In a specific application of this strategy, we have fused CB to the dimeric bHLH skeletal muscle transcription factor MyoD. The CB-MyoD fusion protein localizes to the cytoplasm, presumably the lysosome, demonstrating the dominance of lysosomal localization to nuclear localization. The CB-MyoD fusion appears to divert homodimerizing native MyoD from its usual nuclear destination, consequently inhibiting MyoD-mediated transactivation and in vitro differentiation of C2C12 myoblasts. Surprisingly, the CB-MyoD fusion fails to interact with the bHLH heterodimerization partners, E12 and E47, suggesting preferential MyoD homodimer formation, at least in the prenuclear cellular compartments.

Full Text

The Full Text of this article is available as a PDF (4.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amano T., Nakanishi H., Kondo T., Tanaka T., Oka M., Yamamoto K. Age-related changes in cellular localization and enzymatic activities of cathepsins B, L and D in the rat trigeminal ganglion neuron. Mech Ageing Dev. 1995 Sep 15;83(3):133–141. doi: 10.1016/0047-6374(95)01615-7. [DOI] [PubMed] [Google Scholar]
  2. Benezra R. An intermolecular disulfide bond stabilizes E2A homodimers and is required for DNA binding at physiological temperatures. Cell. 1994 Dec 16;79(6):1057–1067. doi: 10.1016/0092-8674(94)90036-1. [DOI] [PubMed] [Google Scholar]
  3. Buonocore L., Rose J. K. Prevention of HIV-1 glycoprotein transport by soluble CD4 retained in the endoplasmic reticulum. Nature. 1990 Jun 14;345(6276):625–628. doi: 10.1038/345625a0. [DOI] [PubMed] [Google Scholar]
  4. Campo E., Muñoz J., Miquel R., Palacín A., Cardesa A., Sloane B. F., Emmert-Buck M. R. Cathepsin B expression in colorectal carcinomas correlates with tumor progression and shortened patient survival. Am J Pathol. 1994 Aug;145(2):301–309. [PMC free article] [PubMed] [Google Scholar]
  5. Chan S. J., San Segundo B., McCormick M. B., Steiner D. F. Nucleotide and predicted amino acid sequences of cloned human and mouse preprocathepsin B cDNAs. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7721–7725. doi: 10.1073/pnas.83.20.7721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davis R. L., Cheng P. F., Lassar A. B., Weintraub H. The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell. 1990 Mar 9;60(5):733–746. doi: 10.1016/0092-8674(90)90088-v. [DOI] [PubMed] [Google Scholar]
  7. Davis R. L., Weintraub H. Acquisition of myogenic specificity by replacement of three amino acid residues from MyoD into E12. Science. 1992 May 15;256(5059):1027–1030. doi: 10.1126/science.1317057. [DOI] [PubMed] [Google Scholar]
  8. Davis R. L., Weintraub H., Lassar A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987 Dec 24;51(6):987–1000. doi: 10.1016/0092-8674(87)90585-x. [DOI] [PubMed] [Google Scholar]
  9. Dias P., Parham D. M., Shapiro D. N., Tapscott S. J., Houghton P. J. Monoclonal antibodies to the myogenic regulatory protein MyoD1: epitope mapping and diagnostic utility. Cancer Res. 1992 Dec 1;52(23):6431–6439. [PubMed] [Google Scholar]
  10. Edmondson D. G., Olson E. N. Helix-loop-helix proteins as regulators of muscle-specific transcription. J Biol Chem. 1993 Jan 15;268(2):755–758. [PubMed] [Google Scholar]
  11. Goldfarb A. N., Lewandowska K. Nuclear redirection of a cytoplasmic helix-loop-helix protein via heterodimerization with a nuclear localizing partner. Exp Cell Res. 1994 Oct;214(2):481–485. doi: 10.1006/excr.1994.1285. [DOI] [PubMed] [Google Scholar]
  12. Herskowitz I. Functional inactivation of genes by dominant negative mutations. Nature. 1987 Sep 17;329(6136):219–222. doi: 10.1038/329219a0. [DOI] [PubMed] [Google Scholar]
  13. Horwitz M. Hypermethylated myoblasts specifically deficient in MyoD autoactivation as a consequence of instability of MyoD. Exp Cell Res. 1996 Jul 10;226(1):170–182. doi: 10.1006/excr.1996.0216. [DOI] [PubMed] [Google Scholar]
  14. Lassar A. B., Davis R. L., Wright W. E., Kadesch T., Murre C., Voronova A., Baltimore D., Weintraub H. Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo. Cell. 1991 Jul 26;66(2):305–315. doi: 10.1016/0092-8674(91)90620-e. [DOI] [PubMed] [Google Scholar]
  15. Laue T. M., Starovasnik M. A., Weintraub H., Sun X. H., Snider L., Klevit R. E. MyoD forms micelles which can dissociate to form heterodimers with E47: implications of micellization on function. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11824–11828. doi: 10.1073/pnas.92.25.11824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lin X., Dashti A., Schinazi R. F., Tang J. Intracellular diversion of glycoprotein GP160 of human immunodeficiency virus to lysosomes as a strategy of AIDS gene therapy. FASEB J. 1993 Aug;7(11):1070–1080. doi: 10.1096/fasebj.7.11.8370478. [DOI] [PubMed] [Google Scholar]
  17. Murre C., McCaw P. S., Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell. 1989 Mar 10;56(5):777–783. doi: 10.1016/0092-8674(89)90682-x. [DOI] [PubMed] [Google Scholar]
  18. Murre C., McCaw P. S., Vaessin H., Caudy M., Jan L. Y., Jan Y. N., Cabrera C. V., Buskin J. N., Hauschka S. D., Lassar A. B. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell. 1989 Aug 11;58(3):537–544. doi: 10.1016/0092-8674(89)90434-0. [DOI] [PubMed] [Google Scholar]
  19. Neuhold L. A., Wold B. HLH forced dimers: tethering MyoD to E47 generates a dominant positive myogenic factor insulated from negative regulation by Id. Cell. 1993 Sep 24;74(6):1033–1042. doi: 10.1016/0092-8674(93)90725-6. [DOI] [PubMed] [Google Scholar]
  20. Owada M., Neufeld E. F. Is there a mechanism for introducing acid hydrolases into liver lysosomes that is independent of mannose 6-phosphate recognition? Evidence from I-cell disease. Biochem Biophys Res Commun. 1982 Apr 14;105(3):814–820. doi: 10.1016/0006-291x(82)91042-7. [DOI] [PubMed] [Google Scholar]
  21. Reyes H., Reisz-Porszasz S., Hankinson O. Identification of the Ah receptor nuclear translocator protein (Arnt) as a component of the DNA binding form of the Ah receptor. Science. 1992 May 22;256(5060):1193–1195. doi: 10.1126/science.256.5060.1193. [DOI] [PubMed] [Google Scholar]
  22. Rijnboutt S., Kal A. J., Geuze H. J., Aerts H., Strous G. J. Mannose 6-phosphate-independent targeting of cathepsin D to lysosomes in HepG2 cells. J Biol Chem. 1991 Dec 15;266(35):23586–23592. [PubMed] [Google Scholar]
  23. Roninson I. B., Gudkov A. V., Holzmayer T. A., Kirschling D. J., Kazarov A. R., Zelnick C. R., Mazo I. A., Axenovich S., Thimmapaya R. Genetic suppressor elements: new tools for molecular oncology--thirteenth Cornelius P. Rhoads Memorial Award Lecture. Cancer Res. 1995 Sep 15;55(18):4023–4028. [PubMed] [Google Scholar]
  24. Rowan A. D., Mason P., Mach L., Mort J. S. Rat procathepsin B. Proteolytic processing to the mature form in vitro. J Biol Chem. 1992 Aug 5;267(22):15993–15999. [PubMed] [Google Scholar]
  25. Rupp R. A., Snider L., Weintraub H. Xenopus embryos regulate the nuclear localization of XMyoD. Genes Dev. 1994 Jun 1;8(11):1311–1323. doi: 10.1101/gad.8.11.1311. [DOI] [PubMed] [Google Scholar]
  26. Schreiber E., Matthias P., Müller M. M., Schaffner W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 1989 Aug 11;17(15):6419–6419. doi: 10.1093/nar/17.15.6419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Smith D. H., Byrn R. A., Marsters S. A., Gregory T., Groopman J. E., Capon D. J. Blocking of HIV-1 infectivity by a soluble, secreted form of the CD4 antigen. Science. 1987 Dec 18;238(4834):1704–1707. doi: 10.1126/science.3500514. [DOI] [PubMed] [Google Scholar]
  28. Tapscott S. J., Davis R. L., Thayer M. J., Cheng P. F., Weintraub H., Lassar A. B. MyoD1: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science. 1988 Oct 21;242(4877):405–411. doi: 10.1126/science.3175662. [DOI] [PubMed] [Google Scholar]
  29. Terada T., Ohta T., Minato H., Nakanuma Y. Expression of pancreatic trypsinogen/trypsin and cathepsin B in human cholangiocarcinomas and hepatocellular carcinomas. Hum Pathol. 1995 Jul;26(7):746–752. doi: 10.1016/0046-8177(95)90222-8. [DOI] [PubMed] [Google Scholar]
  30. Thayer M. J., Weintraub H. A cellular factor stimulates the DNA-binding activity of MyoD and E47. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6483–6487. doi: 10.1073/pnas.90.14.6483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Turner D. L., Weintraub H. Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev. 1994 Jun 15;8(12):1434–1447. doi: 10.1101/gad.8.12.1434. [DOI] [PubMed] [Google Scholar]
  32. Vandromme M., Cavadore J. C., Bonnieu A., Froeschlé A., Lamb N., Fernandez A. Two nuclear localization signals present in the basic-helix 1 domains of MyoD promote its active nuclear translocation and can function independently. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4646–4650. doi: 10.1073/pnas.92.10.4646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Varshavsky A. Codominance and toxins: a path to drugs of nearly unlimited selectivity. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3663–3667. doi: 10.1073/pnas.92.9.3663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Visscher D. W., Sloane B. F., Sameni M., Babiarz J. W., Jacobson J., Crissman J. D. Clinicopathologic significance of cathepsin B immunostaining in transitional neoplasia. Mod Pathol. 1994 Jan;7(1):76–81. [PubMed] [Google Scholar]
  35. Wagner R. W. The state of the art in antisense research. Nat Med. 1995 Nov;1(11):1116–1118. doi: 10.1038/nm1195-1116. [DOI] [PubMed] [Google Scholar]
  36. Waheed A., Gottschalk S., Hille A., Krentler C., Pohlmann R., Braulke T., Hauser H., Geuze H., von Figura K. Human lysosomal acid phosphatase is transported as a transmembrane protein to lysosomes in transfected baby hamster kidney cells. EMBO J. 1988 Aug;7(8):2351–2358. doi: 10.1002/j.1460-2075.1988.tb03079.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Waheed A., Pohlmann R., Hasilik A., von Figura K., van Elsen A., Leroy J. G. Deficiency of UDP-N-acetylglucosamine:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase in organs of I-cell patients. Biochem Biophys Res Commun. 1982 Apr 14;105(3):1052–1058. doi: 10.1016/0006-291x(82)91076-2. [DOI] [PubMed] [Google Scholar]
  38. Weintraub H., Davis R., Lockshon D., Lassar A. MyoD binds cooperatively to two sites in a target enhancer sequence: occupancy of two sites is required for activation. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5623–5627. doi: 10.1073/pnas.87.15.5623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Weintraub H., Dwarki V. J., Verma I., Davis R., Hollenberg S., Snider L., Lassar A., Tapscott S. J. Muscle-specific transcriptional activation by MyoD. Genes Dev. 1991 Aug;5(8):1377–1386. doi: 10.1101/gad.5.8.1377. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES