Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Nov 2;135(4):981–989. doi: 10.1083/jcb.135.4.981

Midzone microtubule bundles are continuously required for cytokinesis in cultured epithelial cells [published erratum appears in J Cell Biol 1996 Dec;135(6 Pt 1):1679]

PMCID: PMC2133397  PMID: 8922381

Abstract

The current model of cytokinesis proposes that spindle poles and associated microtubules determine the cleavage plane, and, once the signal has been delivered to the cortex, the entire mitotic apparatus can be removed without affecting cell division. While supported by compelling data from Echinoderm embryos, recent observations suggest that the model may not be universally applicable. In this study, we have examined the relationship(s) among microtubules, chromosomes, and cleavage activity in living normal rat kidney (NRK) cells with multipolar mitotic figures. We found that cleavage activity correlated with the distribution of midzone microtubule bundles and Telophase Disc 60 protein (TD60) rather than the position of spindle poles. In addition, reduction of midzone microtubules near the cortex, by either nocodazole treatment or spontaneous reorganization in tripolar cells, caused inhibition or regression of furrowing. These results demonstrate that continuous interaction between midzone microtubule bundles and the cortex is required for successful cleavage in tissue culture cells.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreassen P. R., Palmer D. K., Wener M. H., Margolis R. L. Telophase disc: a new mammalian mitotic organelle that bisects telophase cells with a possible function in cytokinesis. J Cell Sci. 1991 Jul;99(Pt 3):523–534. doi: 10.1242/jcs.99.3.523. [DOI] [PubMed] [Google Scholar]
  2. Asnes C. F., Schroeder T. E. Cell cleavage. Ultrastructural evidence against equatorial stimulation by aster microtubules. Exp Cell Res. 1979 Sep;122(2):327–338. doi: 10.1016/0014-4827(79)90309-4. [DOI] [PubMed] [Google Scholar]
  3. Cao L. G., Wang Y. L. Signals from the spindle midzone are required for the stimulation of cytokinesis in cultured epithelial cells. Mol Biol Cell. 1996 Feb;7(2):225–232. doi: 10.1091/mbc.7.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Conrad A. H., Paulsen A. Q., Conrad G. W. The role of microtubules in contractile ring function. J Exp Zool. 1992 May 1;262(2):154–165. doi: 10.1002/jez.1402620205. [DOI] [PubMed] [Google Scholar]
  5. Cooke C. A., Heck M. M., Earnshaw W. C. The inner centromere protein (INCENP) antigens: movement from inner centromere to midbody during mitosis. J Cell Biol. 1987 Nov;105(5):2053–2067. doi: 10.1083/jcb.105.5.2053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davidson R. L., Gerald P. S. Improved techniques for the induction of mammalian cell hybridization by polyethylene glycol. Somatic Cell Genet. 1976 Mar;2(2):165–176. doi: 10.1007/BF01542629. [DOI] [PubMed] [Google Scholar]
  7. Devore J. J., Conrad G. W., Rappaport R. A model for astral stimulation of cytokinesis in animal cells. J Cell Biol. 1989 Nov;109(5):2225–2232. doi: 10.1083/jcb.109.5.2225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Earnshaw W. C., Bernat R. L. Chromosomal passengers: toward an integrated view of mitosis. Chromosoma. 1991 Mar;100(3):139–146. doi: 10.1007/BF00337241. [DOI] [PubMed] [Google Scholar]
  9. Earnshaw W. C., Mackay A. M. Role of nonhistone proteins in the chromosomal events of mitosis. FASEB J. 1994 Sep;8(12):947–956. doi: 10.1096/fasebj.8.12.8088460. [DOI] [PubMed] [Google Scholar]
  10. Fishkind D. J., Silverman J. D., Wang Y. L. Function of spindle microtubules in directing cortical movement and actin filament organization in dividing cultured cells. J Cell Sci. 1996 Aug;109(Pt 8):2041–2051. doi: 10.1242/jcs.109.8.2041. [DOI] [PubMed] [Google Scholar]
  11. Fishkind D. J., Wang Y. L. New horizons for cytokinesis. Curr Opin Cell Biol. 1995 Feb;7(1):23–31. doi: 10.1016/0955-0674(95)80041-7. [DOI] [PubMed] [Google Scholar]
  12. Fishkind D. J., Wang Y. L. Orientation and three-dimensional organization of actin filaments in dividing cultured cells. J Cell Biol. 1993 Nov;123(4):837–848. doi: 10.1083/jcb.123.4.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ghosh S., Paweletz N. Synchronous DNA synthesis and mitosis in multinucleate cells with one chromosome in each nucleus. Chromosoma. 1984;89(3):197–200. doi: 10.1007/BF00294999. [DOI] [PubMed] [Google Scholar]
  14. HIRAMOTO Y. Cell division without mitotic apparatus in sea urchin eggs. Exp Cell Res. 1956 Dec;11(3):630–636. doi: 10.1016/0014-4827(56)90171-9. [DOI] [PubMed] [Google Scholar]
  15. Hamaguchi Y., Toriyama M., Sakai H., Hiramoto Y. Distribution of fluorescently labeled tubulin injected into sand dollar eggs from fertilization through cleavage. J Cell Biol. 1985 Apr;100(4):1262–1272. doi: 10.1083/jcb.100.4.1262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Harris A. K., Gewalt S. L. Simulation testing of mechanisms for inducing the formation of the contractile ring in cytokinesis. J Cell Biol. 1989 Nov;109(5):2215–2223. doi: 10.1083/jcb.109.5.2215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kawamura K. Microdissection studies on the dividing neuroblast of the grasshopper, with special reference to the mechanism of unequal cytokinesis. Exp Cell Res. 1977 Apr;106(1):127–137. doi: 10.1016/0014-4827(77)90249-x. [DOI] [PubMed] [Google Scholar]
  18. Keryer G., Ris H., Borisy G. G. Centriole distribution during tripolar mitosis in Chinese hamster ovary cells. J Cell Biol. 1984 Jun;98(6):2222–2229. doi: 10.1083/jcb.98.6.2222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Lewis L., Albrecht-Buehler G. Distribution of multiple centrospheres determines migration of BHK syncitia. Cell Motil Cytoskeleton. 1987;7(3):282–290. doi: 10.1002/cm.970070310. [DOI] [PubMed] [Google Scholar]
  21. Mabuchi I. Biochemical aspects of cytokinesis. Int Rev Cytol. 1986;101:175–213. doi: 10.1016/s0074-7696(08)60249-1. [DOI] [PubMed] [Google Scholar]
  22. Margolis R. L., Andreassen P. R. The telophase disc: its possible role in mammalian cell cleavage. Bioessays. 1993 Mar;15(3):201–207. doi: 10.1002/bies.950150310. [DOI] [PubMed] [Google Scholar]
  23. Martineau S. N., Andreassen P. R., Margolis R. L. Delay of HeLa cell cleavage into interphase using dihydrocytochalasin B: retention of a postmitotic spindle and telophase disc correlates with synchronous cleavage recovery. J Cell Biol. 1995 Oct;131(1):191–205. doi: 10.1083/jcb.131.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mastronarde D. N., McDonald K. L., Ding R., McIntosh J. R. Interpolar spindle microtubules in PTK cells. J Cell Biol. 1993 Dec;123(6 Pt 1):1475–1489. doi: 10.1083/jcb.123.6.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mckenna N. M., Wang Y. L. Culturing cells on the microscope stage. Methods Cell Biol. 1989;29:195–205. doi: 10.1016/s0091-679x(08)60195-8. [DOI] [PubMed] [Google Scholar]
  26. Mullins J. M., Snyder J. A. Anaphase progression and furrow establishment in nocodazole-arrested PtK1 cells. Chromosoma. 1981;83(4):493–505. doi: 10.1007/BF00328275. [DOI] [PubMed] [Google Scholar]
  27. Nislow C., Lombillo V. A., Kuriyama R., McIntosh J. R. A plus-end-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles. Nature. 1992 Oct 8;359(6395):543–547. doi: 10.1038/359543a0. [DOI] [PubMed] [Google Scholar]
  28. Oka M. T., Arai T., Hamaguchi Y. Different reactivity with monoclonal anti-tubulin antibodies between native and fixed mitotic microtubules in sea urchin eggs. Cell Motil Cytoskeleton. 1994;29(3):241–249. doi: 10.1002/cm.970290307. [DOI] [PubMed] [Google Scholar]
  29. RAPPAPORT R., EBSTEIN R. P. DURATION OF STIMULUS AND LATENT PERIODS PRECEDING FURROW FORMATION IN SAND DOLLAR EGGS. J Exp Zool. 1965 Apr;158:373–382. doi: 10.1002/jez.1401580311. [DOI] [PubMed] [Google Scholar]
  30. RAPPAPORT R. Experiments concerning the cleavage stimulus in sand dollar eggs. J Exp Zool. 1961 Oct;148:81–89. doi: 10.1002/jez.1401480107. [DOI] [PubMed] [Google Scholar]
  31. Rappaport R., Rappaport B. N. Duration of division-related events in cleaving sand dollar eggs. Dev Biol. 1993 Jul;158(1):265–273. doi: 10.1006/dbio.1993.1185. [DOI] [PubMed] [Google Scholar]
  32. Rappaport R., Rappaport B. N. Establishment of cleavage furrows by the mitotic spindle. J Exp Zool. 1974 Aug;189(2):189–196. doi: 10.1002/jez.1401890206. [DOI] [PubMed] [Google Scholar]
  33. Rappaport R. Repeated furrow formation from a single mitotic apparatus in cylindrical sand dollar eggs. J Exp Zool. 1985 Apr;234(1):167–171. doi: 10.1002/jez.1402340120. [DOI] [PubMed] [Google Scholar]
  34. Rattner J. B. Mapping the mammalian intercellular bridge. Cell Motil Cytoskeleton. 1992;23(4):231–235. doi: 10.1002/cm.970230402. [DOI] [PubMed] [Google Scholar]
  35. Salmon E. D. Cytokinesis in animal cells. Curr Opin Cell Biol. 1989 Jun;1(3):541–547. doi: 10.1016/0955-0674(89)90018-5. [DOI] [PubMed] [Google Scholar]
  36. Sammak P. J., Borisy G. G. Detection of single fluorescent microtubules and methods for determining their dynamics in living cells. Cell Motil Cytoskeleton. 1988;10(1-2):237–245. doi: 10.1002/cm.970100128. [DOI] [PubMed] [Google Scholar]
  37. Satterwhite L. L., Pollard T. D. Cytokinesis. Curr Opin Cell Biol. 1992 Feb;4(1):43–52. doi: 10.1016/0955-0674(92)90057-j. [DOI] [PubMed] [Google Scholar]
  38. Saxton W. M., McIntosh J. R. Interzone microtubule behavior in late anaphase and telophase spindles. J Cell Biol. 1987 Aug;105(2):875–886. doi: 10.1083/jcb.105.2.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Schroeder T. E. The contractile ring. I. Fine structure of dividing mammalian (HeLa) cells and the effects of cytochalasin B. Z Zellforsch Mikrosk Anat. 1970;109(4):431–449. [PubMed] [Google Scholar]
  40. Schroeder T. E. The origin of cleavage forces in dividing eggs. A mechanism in two steps. Exp Cell Res. 1981 Jul;134(1):231–240. doi: 10.1016/0014-4827(81)90480-8. [DOI] [PubMed] [Google Scholar]
  41. Sellitto C., Kuriyama R. Distribution of a matrix component of the midbody during the cell cycle in Chinese hamster ovary cells. J Cell Biol. 1988 Feb;106(2):431–439. doi: 10.1083/jcb.106.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Small J. V. Organization of actin in the leading edge of cultured cells: influence of osmium tetroxide and dehydration on the ultrastructure of actin meshworks. J Cell Biol. 1981 Dec;91(3 Pt 1):695–705. doi: 10.1083/jcb.91.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Small J. V., Rinnerthaler G., Hinssen H. Organization of actin meshworks in cultured cells: the leading edge. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):599–611. doi: 10.1101/sqb.1982.046.01.056. [DOI] [PubMed] [Google Scholar]
  44. Strome S. Determination of cleavage planes. Cell. 1993 Jan 15;72(1):3–6. doi: 10.1016/0092-8674(93)90041-n. [DOI] [PubMed] [Google Scholar]
  45. Wadsworth P., Sloboda R. D. Microinjection of fluorescent tubulin into dividing sea urchin cells. J Cell Biol. 1983 Oct;97(4):1249–1254. doi: 10.1083/jcb.97.4.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. White J. G., Borisy G. G. On the mechanisms of cytokinesis in animal cells. J Theor Biol. 1983 Mar 21;101(2):289–316. doi: 10.1016/0022-5193(83)90342-9. [DOI] [PubMed] [Google Scholar]
  47. Williams B. C., Riedy M. F., Williams E. V., Gatti M., Goldberg M. L. The Drosophila kinesin-like protein KLP3A is a midbody component required for central spindle assembly and initiation of cytokinesis. J Cell Biol. 1995 May;129(3):709–723. doi: 10.1083/jcb.129.3.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Williams R. C., Jr, Lee J. C. Preparation of tubulin from brain. Methods Enzymol. 1982;85(Pt B):376–385. doi: 10.1016/0076-6879(82)85038-6. [DOI] [PubMed] [Google Scholar]
  49. Yen T. J., Compton D. A., Wise D., Zinkowski R. P., Brinkley B. R., Earnshaw W. C., Cleveland D. W. CENP-E, a novel human centromere-associated protein required for progression from metaphase to anaphase. EMBO J. 1991 May;10(5):1245–1254. doi: 10.1002/j.1460-2075.1991.tb08066.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zhang D., Nicklas R. B. 'Anaphase' and cytokinesis in the absence of chromosomes. Nature. 1996 Aug 1;382(6590):466–468. doi: 10.1038/382466a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES