Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Dec 2;135(6):1501–1513. doi: 10.1083/jcb.135.6.1501

A role for N-myristoylation in protein targeting: NADH-cytochrome b5 reductase requires myristic acid for association with outer mitochondrial but not ER membranes

PMCID: PMC2133939  PMID: 8978818

Abstract

N-myristoylation is a cotranslational modification involved in protein- protein interactions as well as in anchoring polypeptides to phospholipid bilayers; however, its role in targeting proteins to specific subcellular compartments has not been clearly defined. The mammalian myristoylated flavoenzyme NADH-cytochrome b5 reductase is integrated into ER and mitochondrial outer membranes via an anchor containing a stretch of 14 uncharged amino acids downstream to the NH2- terminal myristoylate glycine. Since previous studies suggested that the anchoring function could be adequately carried out by the 14 uncharged residues, we investigated a possible role for myristic acid in reductase targeting. The wild type (wt) and a nonmyristoylatable reductase mutant (gly2-->ala) were stably expressed in MDCK cells, and their localization was investigated by immunofluorescence, immuno-EM, and cell fractionation. By all three techniques, the wt protein localized to ER and mitochondria, while the nonmyristoylated mutant was found only on ER membranes. Pulse-chase experiments indicated that this altered steady state distribution was due to the mutant's inability to target to mitochondria, and not to its enhanced instability in that location. Both wt and mutant reductase were resistant to Na2CO3 extraction and partitioned into the detergent phase after treatment of a membrane fraction with Triton X-114, demonstrating that myristic acid is not required for tight anchoring of reductase to membranes. Our results indicate that myristoylated reductase localizes to ER and mitochondria by different mechanisms, and reveal a novel role for myristic acid in protein targeting.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aitken A., Cohen P., Santikarn S., Williams D. H., Calder A. G., Smith A., Klee C. B. Identification of the NH2-terminal blocking group of calcineurin B as myristic acid. FEBS Lett. 1982 Dec 27;150(2):314–318. doi: 10.1016/0014-5793(82)80759-x. [DOI] [PubMed] [Google Scholar]
  2. Ames J. B., Porumb T., Tanaka T., Ikura M., Stryer L. Amino-terminal myristoylation induces cooperative calcium binding to recoverin. J Biol Chem. 1995 Mar 3;270(9):4526–4533. doi: 10.1074/jbc.270.9.4526. [DOI] [PubMed] [Google Scholar]
  3. Andrews D. W., Lauffer L., Walter P., Lingappa V. R. Evidence for a two-step mechanism involved in assembly of functional signal recognition particle receptor. J Cell Biol. 1989 Mar;108(3):797–810. doi: 10.1083/jcb.108.3.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bassetti M., Pasini D. L., Rosa P. Degradation of gonadotropin beta-subunits retained in the endoplasmic reticulum of the gonadotropes of castrated rats. Endocrinology. 1995 Mar;136(3):1168–1176. doi: 10.1210/endo.136.3.7867570. [DOI] [PubMed] [Google Scholar]
  5. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  6. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
  7. Borgese N., D'Arrigo A., De Silvestris M., Pietrini G. NADH-cytochrome b5 reductase and cytochrome b5. The problem of posttranslational targeting to the endoplasmic reticulum. Subcell Biochem. 1993;21:313–341. doi: 10.1007/978-1-4615-2912-5_14. [DOI] [PubMed] [Google Scholar]
  8. Borgese N., Gaetani S. Site of synthesis of rat liver NADH--cytochrome b5 reductase, an integral membrane protein. FEBS Lett. 1980 Apr 7;112(2):216–220. doi: 10.1016/0014-5793(80)80183-9. [DOI] [PubMed] [Google Scholar]
  9. Borgese N., Longhi R. Both the outer mitochondrial membrane and the microsomal forms of cytochrome b5 reductase contain covalently bound myristic acid. Quantitative analysis on the polyvinylidene difluoride-immobilized proteins. Biochem J. 1990 Mar 1;266(2):341–347. doi: 10.1042/bj2660341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Borgese N., Pietrini G. Distribution of the integral membrane protein NADH-cytochrome b5 reductase in rat liver cells, studied with a quantitative radioimmunoblotting assay. Biochem J. 1986 Oct 15;239(2):393–403. doi: 10.1042/bj2390393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Borgese N., Pietrini G., Meldolesi J. Localization and biosynthesis of NADH-cytochrome b5 reductase, an iontegral membrane protein, in rat liver cells. III. Evidence for the independent insertion and turnover the enzyme in various subcellular compartments. J Cell Biol. 1980 Jul;86(1):38–45. doi: 10.1083/jcb.86.1.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Brewer C. B., Roth M. G. A single amino acid change in the cytoplasmic domain alters the polarized delivery of influenza virus hemagglutinin. J Cell Biol. 1991 Aug;114(3):413–421. doi: 10.1083/jcb.114.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Busconi L., Michel T. Endothelial nitric oxide synthase. N-terminal myristoylation determines subcellular localization. J Biol Chem. 1993 Apr 25;268(12):8410–8413. [PubMed] [Google Scholar]
  14. Cao W., Douglas M. G. Biogenesis of ISP6, a small carboxyl-terminal anchored protein of the receptor complex of the mitochondrial outer membrane. J Biol Chem. 1995 Mar 10;270(10):5674–5679. doi: 10.1074/jbc.270.10.5674. [DOI] [PubMed] [Google Scholar]
  15. Carr S. A., Biemann K., Shoji S., Parmelee D. C., Titani K. n-Tetradecanoyl is the NH2-terminal blocking group of the catalytic subunit of cyclic AMP-dependent protein kinase from bovine cardiac muscle. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6128–6131. doi: 10.1073/pnas.79.20.6128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Casey P. J. Protein lipidation in cell signaling. Science. 1995 Apr 14;268(5208):221–225. doi: 10.1126/science.7716512. [DOI] [PubMed] [Google Scholar]
  17. Cham B. E., Knowles B. R. A solvent system for delipidation of plasma or serum without protein precipitation. J Lipid Res. 1976 Mar;17(2):176–181. [PubMed] [Google Scholar]
  18. Chow M., Newman J. F., Filman D., Hogle J. M., Rowlands D. J., Brown F. Myristylation of picornavirus capsid protein VP4 and its structural significance. Nature. 1987 Jun 11;327(6122):482–486. doi: 10.1038/327482a0. [DOI] [PubMed] [Google Scholar]
  19. Cross F. R., Garber E. A., Pellman D., Hanafusa H. A short sequence in the p60src N terminus is required for p60src myristylation and membrane association and for cell transformation. Mol Cell Biol. 1984 Sep;4(9):1834–1842. doi: 10.1128/mcb.4.9.1834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. D'Souza-Schorey C., Stahl P. D. Myristoylation is required for the intracellular localization and endocytic function of ARF6. Exp Cell Res. 1995 Nov;221(1):153–159. doi: 10.1006/excr.1995.1362. [DOI] [PubMed] [Google Scholar]
  21. De Silvestris M., D'Arrigo A., Borgese N. The targeting information of the mitochondrial outer membrane isoform of cytochrome b5 is contained within the carboxyl-terminal region. FEBS Lett. 1995 Aug 14;370(1-2):69–74. doi: 10.1016/0014-5793(95)00797-d. [DOI] [PubMed] [Google Scholar]
  22. Franco M., Chardin P., Chabre M., Paris S. Myristoylation of ADP-ribosylation factor 1 facilitates nucleotide exchange at physiological Mg2+ levels. J Biol Chem. 1995 Jan 20;270(3):1337–1341. doi: 10.1074/jbc.270.3.1337. [DOI] [PubMed] [Google Scholar]
  23. Graff J. M., Gordon J. I., Blackshear P. J. Myristoylated and nonmyristoylated forms of a protein are phosphorylated by protein kinase C. Science. 1989 Oct 27;246(4929):503–506. doi: 10.1126/science.2814478. [DOI] [PubMed] [Google Scholar]
  24. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  25. Hachiya N., Alam R., Sakasegawa Y., Sakaguchi M., Mihara K., Omura T. A mitochondrial import factor purified from rat liver cytosol is an ATP-dependent conformational modulator for precursor proteins. EMBO J. 1993 Apr;12(4):1579–1586. doi: 10.1002/j.1460-2075.1993.tb05802.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hahne K., Haucke V., Ramage L., Schatz G. Incomplete arrest in the outer membrane sorts NADH-cytochrome b5 reductase to two different submitochondrial compartments. Cell. 1994 Dec 2;79(5):829–839. doi: 10.1016/0092-8674(94)90072-8. [DOI] [PubMed] [Google Scholar]
  27. Harris M. P., Neil J. C. Myristoylation-dependent binding of HIV-1 Nef to CD4. J Mol Biol. 1994 Aug 12;241(2):136–142. doi: 10.1006/jmbi.1994.1483. [DOI] [PubMed] [Google Scholar]
  28. Haucke V., Lithgow T., Rospert S., Hahne K., Schatz G. The yeast mitochondrial protein import receptor Mas20p binds precursor proteins through electrostatic interaction with the positively charged presequence. J Biol Chem. 1995 Mar 10;270(10):5565–5570. doi: 10.1074/jbc.270.10.5565. [DOI] [PubMed] [Google Scholar]
  29. Hurt E. C., Müller U., Schatz G. The first twelve amino acids of a yeast mitochondrial outer membrane protein can direct a nuclear-coded cytochrome oxidase subunit to the mitochondrial inner membrane. EMBO J. 1985 Dec 16;4(13A):3509–3518. doi: 10.1002/j.1460-2075.1985.tb04110.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Johnson D. R., Bhatnagar R. S., Knoll L. J., Gordon J. I. Genetic and biochemical studies of protein N-myristoylation. Annu Rev Biochem. 1994;63:869–914. doi: 10.1146/annurev.bi.63.070194.004253. [DOI] [PubMed] [Google Scholar]
  31. Jones T. L., Simonds W. F., Merendino J. J., Jr, Brann M. R., Spiegel A. M. Myristoylation of an inhibitory GTP-binding protein alpha subunit is essential for its membrane attachment. Proc Natl Acad Sci U S A. 1990 Jan;87(2):568–572. doi: 10.1073/pnas.87.2.568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Katsube T., Sakamoto N., Kobayashi Y., Seki R., Hirano M., Tanishima K., Tomoda A., Takazakura E., Yubisui T., Takeshita M. Exonic point mutations in NADH-cytochrome B5 reductase genes of homozygotes for hereditary methemoglobinemia, types I and III: putative mechanisms of tissue-dependent enzyme deficiency. Am J Hum Genet. 1991 Apr;48(4):799–808. [PMC free article] [PubMed] [Google Scholar]
  33. Kensil C. R., Strittmatter P. Binding and fluorescence properties of the membrane domain of NADH-cytochrome-b5 reductase. Determination of the depth of Trp-16 in the bilayer. J Biol Chem. 1986 Jun 5;261(16):7316–7321. [PubMed] [Google Scholar]
  34. Kiebler M., Becker K., Pfanner N., Neupert W. Mitochondrial protein import: specific recognition and membrane translocation of preproteins. J Membr Biol. 1993 Sep;135(3):191–207. doi: 10.1007/BF00211091. [DOI] [PubMed] [Google Scholar]
  35. Kutay U., Hartmann E., Rapoport T. A. A class of membrane proteins with a C-terminal anchor. Trends Cell Biol. 1993 Mar;3(3):72–75. doi: 10.1016/0962-8924(93)90066-a. [DOI] [PubMed] [Google Scholar]
  36. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  37. Linder M. E., Pang I. H., Duronio R. J., Gordon J. I., Sternweis P. C., Gilman A. G. Lipid modifications of G protein subunits. Myristoylation of Go alpha increases its affinity for beta gamma. J Biol Chem. 1991 Mar 5;266(7):4654–4659. [PubMed] [Google Scholar]
  38. Louvard D., Reggio H., Warren G. Antibodies to the Golgi complex and the rough endoplasmic reticulum. J Cell Biol. 1982 Jan;92(1):92–107. doi: 10.1083/jcb.92.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. McBride H. M., Millar D. G., Li J. M., Shore G. C. A signal-anchor sequence selective for the mitochondrial outer membrane. J Cell Biol. 1992 Dec;119(6):1451–1457. doi: 10.1083/jcb.119.6.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. McLaughlin S., Aderem A. The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem Sci. 1995 Jul;20(7):272–276. doi: 10.1016/s0968-0004(00)89042-8. [DOI] [PubMed] [Google Scholar]
  41. Meldolesi J., Corte G., Pietrini G., Borgese N. Localization and biosynthesis of NADH-cytochrome b5 reductase, an integral membrane protein, in rat liver cells. II. Evidence that a single enzyme accounts for the activity in its various subcellular locations. J Cell Biol. 1980 Jun;85(3):516–526. doi: 10.1083/jcb.85.3.516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Mitoma J., Ito A. Mitochondrial targeting signal of rat liver monoamine oxidase B is located at its carboxy terminus. J Biochem. 1992 Jan;111(1):20–24. doi: 10.1093/oxfordjournals.jbchem.a123712. [DOI] [PubMed] [Google Scholar]
  43. Mumby S. M., Heukeroth R. O., Gordon J. I., Gilman A. G. G-protein alpha-subunit expression, myristoylation, and membrane association in COS cells. Proc Natl Acad Sci U S A. 1990 Jan;87(2):728–732. doi: 10.1073/pnas.87.2.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Murakami K., Tanase S., Morino Y., Mori M. Presequence binding factor-dependent and -independent import of proteins into mitochondria. J Biol Chem. 1992 Jul 5;267(19):13119–13122. [PubMed] [Google Scholar]
  45. Nguyen M., Millar D. G., Yong V. W., Korsmeyer S. J., Shore G. C. Targeting of Bcl-2 to the mitochondrial outer membrane by a COOH-terminal signal anchor sequence. J Biol Chem. 1993 Dec 5;268(34):25265–25268. [PubMed] [Google Scholar]
  46. Nicchitta C. V., Migliaccio G., Blobel G. Biochemical fractionation and assembly of the membrane components that mediate nascent chain targeting and translocation. Cell. 1991 May 17;65(4):587–598. doi: 10.1016/0092-8674(91)90091-c. [DOI] [PubMed] [Google Scholar]
  47. Olmsted J. B. Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples. J Biol Chem. 1981 Dec 10;256(23):11955–11957. [PubMed] [Google Scholar]
  48. Ozols J., Carr S. A., Strittmatter P. Identification of the NH2-terminal blocking group of NADH-cytochrome b5 reductase as myristic acid and the complete amino acid sequence of the membrane-binding domain. J Biol Chem. 1984 Nov 10;259(21):13349–13354. [PubMed] [Google Scholar]
  49. Parker B. A., Stark G. R. Regulation of simian virus 40 transcription: sensitive analysis of the RNA species present early in infections by virus or viral DNA. J Virol. 1979 Aug;31(2):360–369. doi: 10.1128/jvi.31.2.360-369.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Peitzsch R. M., McLaughlin S. Binding of acylated peptides and fatty acids to phospholipid vesicles: pertinence to myristoylated proteins. Biochemistry. 1993 Oct 5;32(39):10436–10443. doi: 10.1021/bi00090a020. [DOI] [PubMed] [Google Scholar]
  51. Pietrini G., Aggujaro D., Carrera P., Malyszko J., Vitale A., Borgese N. A single mRNA, transcribed from an alternative, erythroid-specific, promoter, codes for two non-myristylated forms of NADH-cytochrome b5 reductase. J Cell Biol. 1992 Jun;117(5):975–986. doi: 10.1083/jcb.117.5.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Pietrini G., Carrera P., Borgese N. Two transcripts encode rat cytochrome b5 reductase. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7246–7250. doi: 10.1073/pnas.85.19.7246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Randazzo P. A., Terui T., Sturch S., Fales H. M., Ferrige A. G., Kahn R. A. The myristoylated amino terminus of ADP-ribosylation factor 1 is a phospholipid- and GTP-sensitive switch. J Biol Chem. 1995 Jun 16;270(24):14809–14815. doi: 10.1074/jbc.270.24.14809. [DOI] [PubMed] [Google Scholar]
  54. Shirabe K., Fujimoto Y., Yubisui T., Takeshita M. An in-frame deletion of codon 298 of the NADH-cytochrome b5 reductase gene results in hereditary methemoglobinemia type II (generalized type). A functional implication for the role of the COOH-terminal region of the enzyme. J Biol Chem. 1994 Feb 25;269(8):5952–5957. [PubMed] [Google Scholar]
  55. Shirabe K., Landi M. T., Takeshita M., Uziel G., Fedrizzi E., Borgese N. A novel point mutation in a 3' splice site of the NADH-cytochrome b5 reductase gene results in immunologically undetectable enzyme and impaired NADH-dependent ascorbate regeneration in cultured fibroblasts of a patient with type II hereditary methemoglobinemia. Am J Hum Genet. 1995 Aug;57(2):302–310. [PMC free article] [PubMed] [Google Scholar]
  56. Shore G. C., McBride H. M., Millar D. G., Steenaart N. A., Nguyen M. Import and insertion of proteins into the mitochondrial outer membrane. Eur J Biochem. 1995 Jan 15;227(1-2):9–18. doi: 10.1111/j.1432-1033.1995.tb20354.x. [DOI] [PubMed] [Google Scholar]
  57. Sigal C. T., Zhou W., Buser C. A., McLaughlin S., Resh M. D. Amino-terminal basic residues of Src mediate membrane binding through electrostatic interaction with acidic phospholipids. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12253–12257. doi: 10.1073/pnas.91.25.12253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Sottocasa G. L., Kuylenstierna B., Ernster L., Bergstrand A. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol. 1967 Feb;32(2):415–438. doi: 10.1083/jcb.32.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Strittmatter P., Kittler J. M., Coghill J. E., Ozols J. Interaction of non-myristoylated NADH-cytochrome b5 reductase with cytochrome b5-dimyristoylphosphatidylcholine vesicles. J Biol Chem. 1993 Nov 5;268(31):23168–23171. [PubMed] [Google Scholar]
  60. Tanaka T., Ames J. B., Harvey T. S., Stryer L., Ikura M. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Nature. 1995 Aug 3;376(6539):444–447. doi: 10.1038/376444a0. [DOI] [PubMed] [Google Scholar]
  61. Taniguchi H., Manenti S. Interaction of myristoylated alanine-rich protein kinase C substrate (MARCKS) with membrane phospholipids. J Biol Chem. 1993 May 15;268(14):9960–9963. [PubMed] [Google Scholar]
  62. Vaitukaitis J. L. Production of antisera with small doses of immunogen: multiple intradermal injections. Methods Enzymol. 1981;73(Pt B):46–52. doi: 10.1016/0076-6879(81)73055-6. [DOI] [PubMed] [Google Scholar]
  63. Vergères G., Ramsden J., Waskell L. The carboxyl terminus of the membrane-binding domain of cytochrome b5 spans the bilayer of the endoplasmic reticulum. J Biol Chem. 1995 Feb 17;270(7):3414–3422. doi: 10.1074/jbc.270.7.3414. [DOI] [PubMed] [Google Scholar]
  64. Walter P., Johnson A. E. Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu Rev Cell Biol. 1994;10:87–119. doi: 10.1146/annurev.cb.10.110194.000511. [DOI] [PubMed] [Google Scholar]
  65. Yonemoto W., McGlone M. L., Taylor S. S. N-myristylation of the catalytic subunit of cAMP-dependent protein kinase conveys structural stability. J Biol Chem. 1993 Feb 5;268(4):2348–2352. [PubMed] [Google Scholar]
  66. Yu C. A., Yu L., King T. E. Soluble cytochrome b-c1 complex and the reconstitution of succinate-cytochrome c reductase. J Biol Chem. 1974 Aug 10;249(15):4905–4910. [PubMed] [Google Scholar]
  67. Yu G., Felsted R. L. Effect of myristoylation on p27 nef subcellular distribution and suppression of HIV-LTR transcription. Virology. 1992 Mar;187(1):46–55. doi: 10.1016/0042-6822(92)90293-x. [DOI] [PubMed] [Google Scholar]
  68. Zhu D., Cardenas M. E., Heitman J. Myristoylation of calcineurin B is not required for function or interaction with immunophilin-immunosuppressant complexes in the yeast Saccharomyces cerevisiae. J Biol Chem. 1995 Oct 20;270(42):24831–24838. doi: 10.1074/jbc.270.42.24831. [DOI] [PubMed] [Google Scholar]
  69. Zozulya S., Stryer L. Calcium-myristoyl protein switch. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11569–11573. doi: 10.1073/pnas.89.23.11569. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES