Abstract
We have used transgenic mice overexpressing the human tissue inhibitor of metalloproteinases (TIMP)-1 gene under the control of the ubiquitous beta-actin promoter/enhancer to evaluate matrix metalloproteinase (MMP) function in vivo in mammary gland growth and development. By crossing the TIMP-1 transgenic animals with mice expressing an autoactivating stromelysin-1 transgene targeted to mammary epithelial cells, we obtained a range of mice with genetically engineered proteolytic levels. The alveolar epithelial cells of mice expressing autoactivating stromelysin-1 underwent unscheduled apoptosis during late pregnancy. When stromelysin-1 transgenic mice were crossed with mice overexpressing TIMP-1, apoptosis was extinguished. Entactin (nidogen) was a specific target for stromelysin-1 in the extracellular matrix. The enhanced cleavage of basement membrane entactin to above-normal levels was directly related to the apoptosis of overlying mammary epithelial cells and paralleled the extracellular MMP activity. These results provide direct evidence for cleavage of an extracellular matrix molecule by an MMP in vivo.
Full Text
The Full Text of this article is available as a PDF (2.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander C. M., Hansell E. J., Behrendtsen O., Flannery M. L., Kishnani N. S., Hawkes S. P., Werb Z. Expression and function of matrix metalloproteinases and their inhibitors at the maternal-embryonic boundary during mouse embryo implantation. Development. 1996 Jun;122(6):1723–1736. doi: 10.1242/dev.122.6.1723. [DOI] [PubMed] [Google Scholar]
- Alexander C. M., Werb Z. Targeted disruption of the tissue inhibitor of metalloproteinases gene increases the invasive behavior of primitive mesenchymal cells derived from embryonic stem cells in vitro. J Cell Biol. 1992 Aug;118(3):727–739. doi: 10.1083/jcb.118.3.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashkenas J., Werb Z. Proteolysis and the biochemistry of life-or-death decisions. J Exp Med. 1996 May 1;183(5):1947–1951. doi: 10.1084/jem.183.5.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aumailley M., Battaglia C., Mayer U., Reinhardt D., Nischt R., Timpl R., Fox J. W. Nidogen mediates the formation of ternary complexes of basement membrane components. Kidney Int. 1993 Jan;43(1):7–12. doi: 10.1038/ki.1993.3. [DOI] [PubMed] [Google Scholar]
- Birkedal-Hansen H., Moore W. G., Bodden M. K., Windsor L. J., Birkedal-Hansen B., DeCarlo A., Engler J. A. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med. 1993;4(2):197–250. doi: 10.1177/10454411930040020401. [DOI] [PubMed] [Google Scholar]
- Boudreau N., Sympson C. J., Werb Z., Bissell M. J. Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science. 1995 Feb 10;267(5199):891–893. doi: 10.1126/science.7531366. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boudreau N., Werb Z., Bissell M. J. Suppression of apoptosis by basement membrane requires three-dimensional tissue organization and withdrawal from the cell cycle. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3509–3513. doi: 10.1073/pnas.93.8.3509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bullen E. C., Longaker M. T., Updike D. L., Benton R., Ladin D., Hou Z., Howard E. W. Tissue inhibitor of metalloproteinases-1 is decreased and activated gelatinases are increased in chronic wounds. J Invest Dermatol. 1995 Feb;104(2):236–240. doi: 10.1111/1523-1747.ep12612786. [DOI] [PubMed] [Google Scholar]
- Chung A. E., Dong L. J., Wu C., Durkin M. E. Biological functions of entactin. Kidney Int. 1993 Jan;43(1):13–19. doi: 10.1038/ki.1993.4. [DOI] [PubMed] [Google Scholar]
- Dedhar S., Jewell K., Rojiani M., Gray V. The receptor for the basement membrane glycoprotein entactin is the integrin alpha 3/beta 1. J Biol Chem. 1992 Sep 15;267(26):18908–18914. [PubMed] [Google Scholar]
- Ekblom P., Ekblom M., Fecker L., Klein G., Zhang H. Y., Kadoya Y., Chu M. L., Mayer U., Timpl R. Role of mesenchymal nidogen for epithelial morphogenesis in vitro. Development. 1994 Jul;120(7):2003–2014. doi: 10.1242/dev.120.7.2003. [DOI] [PubMed] [Google Scholar]
- Gasson J. C., Golde D. W., Kaufman S. E., Westbrook C. A., Hewick R. M., Kaufman R. J., Wong G. G., Temple P. A., Leary A. C., Brown E. L. Molecular characterization and expression of the gene encoding human erythroid-potentiating activity. 1985 Jun 27-Jul 3Nature. 315(6022):768–771. doi: 10.1038/315768a0. [DOI] [PubMed] [Google Scholar]
- Hsieh J. C., Wu C., Chung A. E. The binding of fibronectin to entactin is mediated through the 29 kDa amino terminal fragment of fibronectin and the G2 domain of entactin. Biochem Biophys Res Commun. 1994 Mar 30;199(3):1509–1517. doi: 10.1006/bbrc.1994.1402. [DOI] [PubMed] [Google Scholar]
- Hughes C. E., Caterson B., White R. J., Roughley P. J., Mort J. S. Monoclonal antibodies recognizing protease-generated neoepitopes from cartilage proteoglycan degradation. Application to studies of human link protein cleavage by stromelysin. J Biol Chem. 1992 Aug 15;267(23):16011–16014. [PubMed] [Google Scholar]
- Huhtala P., Humphries M. J., McCarthy J. B., Tremble P. M., Werb Z., Damsky C. H. Cooperative signaling by alpha 5 beta 1 and alpha 4 beta 1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin. J Cell Biol. 1995 May;129(3):867–879. doi: 10.1083/jcb.129.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kadoya Y., Kadoya K., Durbeej M., Holmvall K., Sorokin L., Ekblom P. Antibodies against domain E3 of laminin-1 and integrin alpha 6 subunit perturb branching epithelial morphogenesis of submandibular gland, but by different modes. J Cell Biol. 1995 Apr;129(2):521–534. doi: 10.1083/jcb.129.2.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khokha R. Suppression of the tumorigenic and metastatic abilities of murine B16-F10 melanoma cells in vivo by the overexpression of the tissue inhibitor of the metalloproteinases-1. J Natl Cancer Inst. 1994 Feb 16;86(4):299–304. doi: 10.1093/jnci/86.4.299. [DOI] [PubMed] [Google Scholar]
- Kulesh D. A., Oshima R. G. Cloning of the human keratin 18 gene and its expression in nonepithelial mouse cells. Mol Cell Biol. 1988 Apr;8(4):1540–1550. doi: 10.1128/mcb.8.4.1540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lochter A., Bissell M. J. Involvement of extracellular matrix constituents in breast cancer. Semin Cancer Biol. 1995 Jun;6(3):165–173. doi: 10.1006/scbi.1995.0017. [DOI] [PubMed] [Google Scholar]
- Lund L. R., Rømer J., Thomasset N., Solberg H., Pyke C., Bissell M. J., Danø K., Werb Z. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways. Development. 1996 Jan;122(1):181–193. doi: 10.1242/dev.122.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayer U., Mann K., Timpl R., Murphy G. Sites of nidogen cleavage by proteases involved in tissue homeostasis and remodelling. Eur J Biochem. 1993 Nov 1;217(3):877–884. doi: 10.1111/j.1432-1033.1993.tb18316.x. [DOI] [PubMed] [Google Scholar]
- Mignatti P., Rifkin D. B. Biology and biochemistry of proteinases in tumor invasion. Physiol Rev. 1993 Jan;73(1):161–195. doi: 10.1152/physrev.1993.73.1.161. [DOI] [PubMed] [Google Scholar]
- Montgomery A. M., Reisfeld R. A., Cheresh D. A. Integrin alpha v beta 3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8856–8860. doi: 10.1073/pnas.91.19.8856. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nomura S., Hogan B. L., Wills A. J., Heath J. K., Edwards D. R. Developmental expression of tissue inhibitor of metalloproteinase (TIMP) RNA. Development. 1989 Mar;105(3):575–583. doi: 10.1242/dev.105.3.575. [DOI] [PubMed] [Google Scholar]
- Reinhardt D., Mann K., Nischt R., Fox J. W., Chu M. L., Krieg T., Timpl R. Mapping of nidogen binding sites for collagen type IV, heparan sulfate proteoglycan, and zinc. J Biol Chem. 1993 May 25;268(15):10881–10887. [PubMed] [Google Scholar]
- Singer I. I., Kawka D. W., Bayne E. K., Donatelli S. A., Weidner J. R., Williams H. R., Ayala J. M., Mumford R. A., Lark M. W., Glant T. T. VDIPEN, a metalloproteinase-generated neoepitope, is induced and immunolocalized in articular cartilage during inflammatory arthritis. J Clin Invest. 1995 May;95(5):2178–2186. doi: 10.1172/JCI117907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sires U. I., Griffin G. L., Broekelmann T. J., Mecham R. P., Murphy G., Chung A. E., Welgus H. G., Senior R. M. Degradation of entactin by matrix metalloproteinases. Susceptibility to matrilysin and identification of cleavage sites. J Biol Chem. 1993 Jan 25;268(3):2069–2074. [PubMed] [Google Scholar]
- Sorsa T., Konttinen Y. T., Lindy O., Ritchlin C., Saari H., Suomalainen K., Eklund K. K., Santavirta S. Collagenase in synovitis of rheumatoid arthritis. Semin Arthritis Rheum. 1992 Aug;22(1):44–53. doi: 10.1016/0049-0172(92)90048-i. [DOI] [PubMed] [Google Scholar]
- Streuli C. H. Extracellular matrix and gene expression in mammary epithelium. Semin Cell Biol. 1993 Jun;4(3):203–212. doi: 10.1006/scel.1993.1024. [DOI] [PubMed] [Google Scholar]
- Streuli C. H., Schmidhauser C., Bailey N., Yurchenco P., Skubitz A. P., Roskelley C., Bissell M. J. Laminin mediates tissue-specific gene expression in mammary epithelia. J Cell Biol. 1995 May;129(3):591–603. doi: 10.1083/jcb.129.3.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sympson C. J., Bissell M. J., Werb Z. Mammary gland tumor formation in transgenic mice overexpressing stromelysin-1. Semin Cancer Biol. 1995 Jun;6(3):159–163. doi: 10.1006/scbi.1995.0022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sympson C. J., Talhouk R. S., Alexander C. M., Chin J. R., Clift S. M., Bissell M. J., Werb Z. Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. J Cell Biol. 1994 May;125(3):681–693. doi: 10.1083/jcb.125.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Talhouk R. S., Bissell M. J., Werb Z. Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. J Cell Biol. 1992 Sep;118(5):1271–1282. doi: 10.1083/jcb.118.5.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warburton M. J., Monaghan P., Ferns S. A., Rudland P. S., Perusinghe N., Chung A. E. Distribution of entactin in the basement membrane of the rat mammary gland. Evidence for a non-epithelial origin. Exp Cell Res. 1984 May;152(1):240–254. doi: 10.1016/0014-4827(84)90249-0. [DOI] [PubMed] [Google Scholar]
- Wicha M. S., Liotta L. A., Vonderhaar B. K., Kidwell W. R. Effects of inhibition of basement membrane collagen deposition on rat mammary gland development. Dev Biol. 1980 Dec;80(2):253–256. doi: 10.1016/0012-1606(80)90402-9. [DOI] [PubMed] [Google Scholar]
- Wu C., Chung A. E., McDonald J. A. A novel role for alpha 3 beta 1 integrins in extracellular matrix assembly. J Cell Sci. 1995 Jun;108(Pt 6):2511–2523. doi: 10.1242/jcs.108.6.2511. [DOI] [PubMed] [Google Scholar]