Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1986 Nov;168(2):568–573. doi: 10.1128/jb.168.2.568-573.1986

Polysaccharide covalently linked to the peptidoglycan of the cyanobacterium Synechocystis sp. strain PCC6714.

U J Jürgens, J Weckesser
PMCID: PMC213518  PMID: 3096958

Abstract

A polysaccharide was found to be covalently linked to the peptidoglycan of the unicellular cyanobacterium Synechocystis sp. strain PCC6714 via phosphodiester bonds. It could be cleaved from the peptidoglycan-polysaccharide (PG-PS) complex by hydrofluoric acid (HF) treatment in the cold (48% HF, 0 degrees C, 48 h) yielding a pure, HF-insoluble peptidoglycan fraction and an HF-soluble polysaccharide fraction. The PG-PS complex was isolated from the Triton X-100-insoluble cell wall fraction by hot sodium dodecyl sulfate treatment and digestion with proteases. Digestion of the complex with N-acetylmuramidase released the glycopeptide-linked polysaccharide, which was further purified by dialysis and gel filtration on Sephadex G-50 and G-200. The polysaccharide consisted of glucosamine, mannosamine, galactosamine, mannose, and glucose and had a molecular weight of 25,000 to 30,000. Muramic acid-6-phosphate was identified as the binding site of the covalently linked, nonphosphorylated polysaccharide as revealed by chemical analysis of linkage fragments of the PG-PS complex.

Full text

PDF
568

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amano K., Hazama S., Araki Y., Ito E. Isolation and characterization of structural components of Bacillus cereus AHU 1356 cell walls. Eur J Biochem. 1977 May 16;75(2):513–522. doi: 10.1111/j.1432-1033.1977.tb11552.x. [DOI] [PubMed] [Google Scholar]
  2. Araki Y., Nakatani T., Makino R., Hayashi H., Ito E. Isolation of glucosaminyl-beta(1-4)-muramic acid and phosphoric acid ester of this disaccharide from acid hydrolysates of peptidoglycan of Bacillus cereus AHU 1356 cell walls. Biochem Biophys Res Commun. 1971 Feb 19;42(4):684–690. doi: 10.1016/0006-291x(71)90542-0. [DOI] [PubMed] [Google Scholar]
  3. Araki Y., Nakatani T., Nakayama K., Ito E. Occurrence of N-nonsubstituted glucosamine residues in peptidoglycan of lysozyme-resistant cell walls from Bacillus cereus. J Biol Chem. 1972 Oct 10;247(19):6312–6322. [PubMed] [Google Scholar]
  4. Braun V., Rehn K. Chemical characterization, spatial distribution and function of a lipoprotein (murein-lipoprotein) of the E. coli cell wall. The specific effect of trypsin on the membrane structure. Eur J Biochem. 1969 Oct;10(3):426–438. doi: 10.1111/j.1432-1033.1969.tb00707.x. [DOI] [PubMed] [Google Scholar]
  5. Button D., Archibald A. R., Baddiley J. The linkage between teichoic acid and glycosaminopeptide in the walls of a strain of Staphylococcus lactis. Biochem J. 1966 May;99(2):11C–14C. doi: 10.1042/bj0990011c. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coyette J., Ghuysen J. M. Structure of the walls of Lactobacillus acidophilus strain 63 AM Gasser. Biochemistry. 1970 Jul 21;9(15):2935–2943. doi: 10.1021/bi00817a001. [DOI] [PubMed] [Google Scholar]
  7. FRANK H., LEFORT M., MARTIN H. H. Chemical analysis of a mucopolymer component in cell walls of the blue-green alga Phormidium uncinatum. Biochem Biophys Res Commun. 1962 May 4;7:322–325. doi: 10.1016/0006-291x(62)90200-0. [DOI] [PubMed] [Google Scholar]
  8. Golecki J. R. Studies on ultrastructure and composition of cell walls of the cyanobacterium Anacystis nidulans. Arch Microbiol. 1977 Jul 26;114(1):35–41. doi: 10.1007/BF00429627. [DOI] [PubMed] [Google Scholar]
  9. Hall E. A., Knox K. W. Properties of the polysaccharide and mucopeptide components of the cell wall of Lactobacillus casei. Biochem J. 1965 Aug;96(2):310–318. doi: 10.1042/bj0960310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hayashi K. A rapid determination of sodium dodecyl sulfate with methylene blue. Anal Biochem. 1975 Aug;67(2):503–506. doi: 10.1016/0003-2697(75)90324-3. [DOI] [PubMed] [Google Scholar]
  11. Jürgens U. J., Drews G., Weckesser J. Primary structure of the peptidoglycan from the unicellular cyanobacterium Synechocystis sp. strain PCC 6714. J Bacteriol. 1983 Apr;154(1):471–478. doi: 10.1128/jb.154.1.471-478.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jürgens U. J., Weckesser J. Carotenoid-containing outer membrane of Synechocystis sp. strain PCC6714. J Bacteriol. 1985 Oct;164(1):384–389. doi: 10.1128/jb.164.1.384-389.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kojima N., Araki Y., Ito E. Structure of linkage region between ribitol teichoic acid and peptidoglycan in cell walls of Staphylococcus aureus H. J Biol Chem. 1983 Aug 10;258(15):9043–9045. [PubMed] [Google Scholar]
  14. LOWRY O. H., ROBERTS N. R., LEINER K. Y., WU M. L., FARR A. L. The quantitative histochemistry of brain. I. Chemical methods. J Biol Chem. 1954 Mar;207(1):1–17. [PubMed] [Google Scholar]
  15. Labischinski H., Barnickel G., Bradaczek H., Giesbrecht P. On the secondary and tertiary structure of murein. Low and medium-angle X-ray evidence against chitin-based conformations of bacterial peptidoglycan. Eur J Biochem. 1979 Mar 15;95(1):147–155. doi: 10.1111/j.1432-1033.1979.tb12949.x. [DOI] [PubMed] [Google Scholar]
  16. Liu T. Y., Gotschlich E. C. Muramic acid phosphate as a component of the mucopeptide of Gram-positive bacteria. J Biol Chem. 1967 Feb 10;242(3):471–476. [PubMed] [Google Scholar]
  17. MOORE S., STEIN W. H. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J Biol Chem. 1954 Dec;211(2):907–913. [PubMed] [Google Scholar]
  18. PARK J. T., JOHNSON M. J. A submicrodetermination of glucose. J Biol Chem. 1949 Nov;181(1):149–151. [PubMed] [Google Scholar]
  19. PERKINS H. R. THE ACTION OF HOT FORMAMIDE ON BACTERIAL CELL WALLS. Biochem J. 1965 Jun;95:876–882. doi: 10.1042/bj0950876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rohr T. E., Levy G. N., Stark N. J., Anderson J. S. Initial reactions in biosynthesis of teichuronic acid of Micrococcus lysodeikticus cell walls. J Biol Chem. 1977 May 25;252(10):3460–3465. [PubMed] [Google Scholar]
  21. STROMINGER J. L., GHUYSEN J. M. ON THE LINKAGE BETWEEN TEICHOIC ACID AND THE GLYCOPEPTIDE IN THE CELL WALL OF STAPHYLOCOCCUS AUREUS. Biochem Biophys Res Commun. 1963 Aug 14;12:418–424. doi: 10.1016/0006-291x(63)90117-7. [DOI] [PubMed] [Google Scholar]
  22. Sasaki Y., Araki Y., Ito E. Structure of linkage region between glycerol teichoic acid and peptidoglycan in Bacillus cereus AHU 1030 cell walls. Biochem Biophys Res Commun. 1980 Sep 30;96(2):529–534. doi: 10.1016/0006-291x(80)91388-1. [DOI] [PubMed] [Google Scholar]
  23. Schleifer K. H., Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev. 1972 Dec;36(4):407–477. doi: 10.1128/br.36.4.407-477.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schleifer K. H., Kandler O. Zur chemischen Zusammensetzung der Zellwand der Streptokokken. II. Die Aminosäuresequenz des Mureins von Str. lactis und cremoris. Arch Mikrobiol. 1967 Jul 6;57(4):365–381. [PubMed] [Google Scholar]
  25. Tipper D. J., Strominger J. L., Ensign J. C. Structure of the cell wall of Staphylococcus aureus, strain Copenhagen. VII. Mode of action of the bacteriolytic peptidase from Myxobacter and the isolation of intact cell wall polysaccharides. Biochemistry. 1967 Mar;6(3):906–920. doi: 10.1021/bi00855a035. [DOI] [PubMed] [Google Scholar]
  26. Yoneyama T., Koike Y., Arakawa H., Yokoyama K., Sasaki Y., Kawamura T., Araki Y., Ito E., Takao S. Distribution of mannosamine and mannosaminuronic acid among cell walls of Bacillus species. J Bacteriol. 1982 Jan;149(1):15–21. doi: 10.1128/jb.149.1.15-21.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES