Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1986 Nov;168(2):752–755. doi: 10.1128/jb.168.2.752-755.1986

Alteration of glucose transport and diauxic growth in 5-thio-D-glucose-resistant mutants of Azotobacter vinelandii.

D McKenney, T Melton
PMCID: PMC213546  PMID: 3782023

Abstract

Spontaneous mutants of Azotobacter vinelandii defective for glucose utilization were selected as resistant to 5-thio-D-glucose. Mutant strains AM2, AM38, and AM39 exhibited longer generation times than the wild type when grown on glucose. Mutant strain AM2 also exhibited an altered Km and Vmax for glucose uptake. During acetate-glucose diauxie, glucose utilization in the 5-thio-D-glucose-resistant mutants was subject to severe inhibition by acetate. These mutants did not exhibit the normal glucose phase of diauxie. Transport studies during diauxie indicated that glucose uptake was not induced in mutant strain AM2. However, increasing the glucose concentration from 25 to 200 mM relieved the severe acetate inhibition, and under these conditions the mutant strain AM2 exhibited normal diauxie. Revertants of mutant strain AM2 exhibited normal glucose and diauxie growth. The results are discussed in terms of a model for acetate regulation of glucose utilization in A. vinelandii.

Full text

PDF
752

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes E. M., Jr Glucose transport in membrane vesicles from Azotobacter vinelandii. Arch Biochem Biophys. 1974 Jul;163(1):416–422. doi: 10.1016/0003-9861(74)90493-7. [DOI] [PubMed] [Google Scholar]
  2. Barnes E. M., Jr Multiple sites for coupling of glucose transport to the respiratory chain of membrane vesicles from Azotobacter vinelandii. J Biol Chem. 1973 Dec 10;248(23):8120–8124. [PubMed] [Google Scholar]
  3. Barnes E. M., Jr Respiration-coupled glucose transport in membrane vesicles from Azotobacter vinelandii. Arch Biochem Biophys. 1972 Oct;152(2):795–799. doi: 10.1016/0003-9861(72)90275-5. [DOI] [PubMed] [Google Scholar]
  4. George S. E., Costenbader C. J., Melton T. Diauxic growth in Azotobacter vinelandii. J Bacteriol. 1985 Nov;164(2):866–871. doi: 10.1128/jb.164.2.866-871.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hoffman D. J., Whistler R. L. Diabetogenic action of 5-thio-D-glucopyranose in rats. Biochemistry. 1968 Dec;7(12):4479–4483. doi: 10.1021/bi00852a044. [DOI] [PubMed] [Google Scholar]
  6. Jones-Mortimer M. C., Kornberg H. L., Maltby R., Watts P. D. Role of the crr-gene in glucose uptake by Escherichia coli. FEBS Lett. 1977 Feb 15;74(1):17–19. doi: 10.1016/0014-5793(77)80742-4. [DOI] [PubMed] [Google Scholar]
  7. Kornberg H. L., Watts P. D. Adenylate cyclase activity and glucose transport in Escherichia coli. Biochem Soc Trans. 1981 Feb;9(1):2–3. doi: 10.1042/bst0090002. [DOI] [PubMed] [Google Scholar]
  8. Kornberg H. L., Watts P. D. tgs and crr: Genes involved in catabolite inhibition and inducer exclusion in Escherichia coli. FEBS Lett. 1979 Aug 15;104(2):313–316. doi: 10.1016/0014-5793(79)80841-8. [DOI] [PubMed] [Google Scholar]
  9. Kornberg H., Watts P. D., Brown K. Mechanisms of 'inducer exclusion' by glucose. FEBS Lett. 1980 Aug 25;117 (Suppl):K28–K36. doi: 10.1016/0014-5793(80)80567-9. [DOI] [PubMed] [Google Scholar]
  10. McGinnis J. F., Paigen K. Catabolite inhibition: a general phenomenon in the control of carbohydrate utilization. J Bacteriol. 1969 Nov;100(2):902–913. doi: 10.1128/jb.100.2.902-913.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McKenney D., Melton T. Isolation and characterization of ack and pta mutations in Azotobacter vinelandii affecting acetate-glucose diauxie. J Bacteriol. 1986 Jan;165(1):6–12. doi: 10.1128/jb.165.1.6-12.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Paranjpe S. V., Jagannathan V. Properties & kinetics of purified particulate ox heart hexokinase. Indian J Biochem. 1971 Dec;8(4):227–231. [PubMed] [Google Scholar]
  13. Postma P. W., Cools A., van Dam K. The transport of Krebs-cycle intermediates in Azotobacter vinelandii under various metabolic conditions. Biochim Biophys Acta. 1973 Aug 9;318(1):91–104. doi: 10.1016/0005-2736(73)90339-8. [DOI] [PubMed] [Google Scholar]
  14. Reed R. E., Hess J. L. Partial purification and characterization of aspartate aminotransferases from seedling oat leaves. J Biol Chem. 1975 Jun 25;250(12):4456–4461. [PubMed] [Google Scholar]
  15. Strandberg G. W., Wilson P. W. Formation of the nitrogen-fixing enzyme system in Azotobacter vinelandii. Can J Microbiol. 1968 Jan;14(1):25–31. doi: 10.1139/m68-005. [DOI] [PubMed] [Google Scholar]
  16. Visser A. S., Postma P. W. Permeability of Azotobacter vinelandii to cations and anions. Biochim Biophys Acta. 1973 Mar 16;298(2):333–340. doi: 10.1016/0005-2736(73)90362-3. [DOI] [PubMed] [Google Scholar]
  17. Whistler R. L., Lake W. C. Inhibition of cellular transport processes by 5-thio-D-glucopyranose. Biochem J. 1972 Dec;130(4):919–925. doi: 10.1042/bj1300919. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES