Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1986 Nov;168(2):780–784. doi: 10.1128/jb.168.2.780-784.1986

Transport of gamma-butyrobetaine in an Agrobacterium species isolated from soil.

S Nobile, J Deshusses
PMCID: PMC213551  PMID: 3782024

Abstract

An Agrobacterium sp. isolated from soil by selective growth on gamma-butyrobetaine (gamma-trimethylaminobutyrate) as the sole source of both carbon and nitrogen has been shown to possess an inducible transport system for this growth substrate. This transport system has a Kt of 0.5 microM and a maximal velocity of 3.8 nmol/min per mg (dry weight). The influx of gamma-butyrobetaine is optimal at pH 8.5 and operates against a concentration gradient. The transport system shows a high specificity for trimethylamine carboxylic acid molecules of defined chain length. gamma-Butyrobetaine uptake was significantly reduced in osmotically shocked cells and a gamma-butyrobetaine binding activity was detected in the crude shock fluid. This suggests a transport mechanism involving a periplasmic gamma-butyrobetaine binding protein.

Full text

PDF
780

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cairney J., Booth I. R., Higgins C. F. Salmonella typhimurium proP gene encodes a transport system for the osmoprotectant betaine. J Bacteriol. 1985 Dec;164(3):1218–1223. doi: 10.1128/jb.164.3.1218-1223.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cirillo V. P. Relationship between sugar structure and competition for the sugar transport system in Bakers' yeast. J Bacteriol. 1968 Feb;95(2):603–611. doi: 10.1128/jb.95.2.603-611.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Deshusses J., Belet M. Purification and properties of the myo-inositol-binding protein from a Pseudomonas sp. J Bacteriol. 1984 Jul;159(1):179–183. doi: 10.1128/jb.159.1.179-183.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kleber H-P, Seim H., Aurich H., Strack E. Verwertung von Trimethylammoniumverbindungen durch Acinetobacter calcoaceticus. Arch Microbiol. 1977 Mar 1;112(2):201–206. doi: 10.1007/BF00429336. [DOI] [PubMed] [Google Scholar]
  5. Le Rudulier D., Bouillard L. Glycine betaine, an osmotic effector in Klebsiella pneumoniae and other members of the Enterobacteriaceae. Appl Environ Microbiol. 1983 Jul;46(1):152–159. doi: 10.1128/aem.46.1.152-159.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Le Rudulier D., Strom A. R., Dandekar A. M., Smith L. T., Valentine R. C. Molecular biology of osmoregulation. Science. 1984 Jun 8;224(4653):1064–1068. doi: 10.1126/science.224.4653.1064. [DOI] [PubMed] [Google Scholar]
  7. Neu H. C., Heppel L. A. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem. 1965 Sep;240(9):3685–3692. [PubMed] [Google Scholar]
  8. Ornston L. N., Ornston M. K., Chou G. Isolation of spontaneous mutant strains of Pseudomonas putida. Biochem Biophys Res Commun. 1969 Jul 7;36(1):179–184. doi: 10.1016/0006-291x(69)90666-4. [DOI] [PubMed] [Google Scholar]
  9. Perroud B., Le Rudulier D. Glycine betaine transport in Escherichia coli: osmotic modulation. J Bacteriol. 1985 Jan;161(1):393–401. doi: 10.1128/jb.161.1.393-401.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES