Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1986 Nov;168(2):833–838. doi: 10.1128/jb.168.2.833-838.1986

Molecular proof that bacteriophage T4 alc and unf genes are the same gene.

L Snyder, L Jorissen
PMCID: PMC213560  PMID: 3782028

Abstract

The DNA of bacteriophage T4 normally has a substituted base, hydroxymethylcytosine, instead of the usual cytosine. The bacteriophage shuts off host transcription after infection presumably by specifically blocking transcription of cytosine DNA. If T4 incorporates cytosine into its own DNA, this shutoff mechanism is directed back at itself and blocks its own transcription. Mutations which overcome this transcriptional block are in the T4 alc gene, and alc mutations allow the propagation of T4 with cytosine in their DNA (L. Snyder, L. Gold, and E. Kutter, Proc. Natl. Acad. Sci. USA 73:3098-3102, 1976). By genetic criteria, alc is the same as another gene, unf, whose product is required for the unfolding of the bacterial nucleoid after infection (K. Sirotkin, J. Wei, and L. Snyder, Nature [London] 265:28-32, 1977; D. P. Snustad, M. A. Tigges, K. A. Parson, C. J. H. Bursch, F. M. Caron, J. F. Koerner, and D. J. Tutas, J. Virol. 17:622-641, 1976; M. Tigges, C. J. H. Bursch, and D. P. Snustad, J. Virol. 24:775-785, 1977). The product of the alc gene has been identified as a 19-kilodalton protein (R. E. Herman, N. Haas, and D. P. Snustad, Genetics 108:305-317, 1984; E. Kutter, R. Drivdahl, and K. Rand, Genetics 108:291-304, 1984), and an open reading frame has been proposed to be the alc gene based on its size and map position (E. Kutter, R. Drivdahl, and K. Rand, Genetics 108:291-304, 1984). We used marker rescue techniques and DNA sequencing to confirm that this open reading frame is the alc gene. We also present a molecular proof that alc and unf are the same gene. While these results do not rigorously exclude the possibility that Unf and Alc are different activities of the same protein, they strongly support the conclusion that the unfolding of the bacterial nucleoid the blockage of transcription are but different manifestations of the same activity.

Full text

PDF
833

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Champness W. C., Snyder L. Bacteriophage T4 gol site: sequence analysis and effects of the site on plasmid transformation. J Virol. 1984 May;50(2):555–562. doi: 10.1128/jvi.50.2.555-562.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Herman R. E., Haas N., Snustad D. P. Identification of the bacteriophage T4 unf ( = alc) gene product, a protein involved in the shutoff of host transcription. Genetics. 1984 Oct;108(2):305–317. doi: 10.1093/genetics/108.2.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kassavetis G. A., Elliott T., Rabussay D. P., Geiduschek E. P. Initiation of transcription at phage T4 late promoters with purified RNA polymerase. Cell. 1983 Jul;33(3):887–897. doi: 10.1016/0092-8674(83)90031-4. [DOI] [PubMed] [Google Scholar]
  5. Koerner J. F., Snustad D. P. Shutoff of host macromolecular synthesis after T-even bacteriophage infection. Microbiol Rev. 1979 Jun;43(2):199–223. doi: 10.1128/mr.43.2.199-223.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kutter E., Beug A., Sluss R., Jensen L., Bradley D. The production of undegraded cytosine-containing DNA by bacteriophage T4 in the absence of dCTPase and endonucleases II and IV, and its effects on T4-directed protein synthesis. J Mol Biol. 1975 Dec 25;99(4):591–607. doi: 10.1016/s0022-2836(75)80174-4. [DOI] [PubMed] [Google Scholar]
  7. Kutter E., Drivdahl R., Rand K. Identification and characterization of the alc gene product of bacteriophage T4. Genetics. 1984 Oct;108(2):291–304. doi: 10.1093/genetics/108.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mileham A. J., Revel H. R., Murray N. E. Molecular cloning of the T4 genome; organization and expression of the frd--DNA ligase region. Mol Gen Genet. 1980;179(2):227–239. doi: 10.1007/BF00425449. [DOI] [PubMed] [Google Scholar]
  9. Pettijohn D. E., Hecht R. RNA molecules bound to the folded bacterial genome stabilize DNA folds and segregate domains of supercoiling. Cold Spring Harb Symp Quant Biol. 1974;38:31–41. doi: 10.1101/sqb.1974.038.01.006. [DOI] [PubMed] [Google Scholar]
  10. Runnels J., Snyder L. Isolation of a bacterial host selective for bacteriophage T4 containing cytosine in its DNA. J Virol. 1978 Sep;27(3):815–818. doi: 10.1128/jvi.27.3.815-818.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sirotkin K., Wei J., Snyder L. T4 Bacteriophage-coded RNA polymerase subunit blocks host transcription and unfolds the host chromosome. Nature. 1977 Jan 6;265(5589):28–32. doi: 10.1038/265028a0. [DOI] [PubMed] [Google Scholar]
  12. Snustad D. P., Conroy L. M. Mutants of bacteriophage T4 deficient in the ability to induce nuclear disruption. I. Isolation and genetic characterization. J Mol Biol. 1974 Nov 15;89(4):663–673. doi: 10.1016/0022-2836(74)90043-6. [DOI] [PubMed] [Google Scholar]
  13. Snustad D. P., Tigges M. A., Parson K. A., Bursch C. J., Caron F. M., Koerner J. F., Tutas D. J. Identification and preliminary characterization of a mutant defective in the bacteriophage T4-induced unfolding of the Escherichia coli nucleoid. J Virol. 1976 Feb;17(2):622–641. doi: 10.1128/jvi.17.2.622-641.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Snyder L., Gold L., Kutter E. A gene of bacteriophage T4 whose product prevents true late transcription on cytosine-containing T4 DNA. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3098–3102. doi: 10.1073/pnas.73.9.3098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  16. Tigges M. A., Bursch C. J., Snustad D. P. Slow switchover from host RNA synthesis to bacteriophage RNA synthesis after infection of Escherichia coli with a T4 mutant defective in the bacteriophage T4-induced unfolding of the host nucleoid. J Virol. 1977 Dec;24(3):775–785. doi: 10.1128/jvi.24.3.775-785.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tutas D. J., Wehner J. M., Koerner J. F. Unfolding of the host genome after infection of Escherichia coli with bacteriophage T4. J Virol. 1974 Feb;13(2):548–550. doi: 10.1128/jvi.13.2.548-550.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wood W. B. Host specificity of DNA produced by Escherichia coli: bacterial mutations affecting the restriction and modification of DNA. J Mol Biol. 1966 Mar;16(1):118–133. doi: 10.1016/s0022-2836(66)80267-x. [DOI] [PubMed] [Google Scholar]
  19. Wu R., Geiduschek E. P. The role of replication proteins in the regulation of bacteriophage T4 transcription. I. Gene 45 and hydroxymethyl-C-containing DNA. J Mol Biol. 1975 Aug 25;96(4):513–538. doi: 10.1016/0022-2836(75)90137-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES