Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1986 Nov;168(2):1023–1025. doi: 10.1128/jb.168.2.1023-1025.1986

Cloning and nucleotide sequence of the Bacillus megaterium gene coding for small, acid-soluble spore protein B.

R H Hackett, B Setlow, P Setlow
PMCID: PMC213588  PMID: 2430935

Abstract

The Bacillus megaterium gene coding for small, acid-soluble spore protein (SASP) B was cloned and its nucleotide sequence was determined. The amino acid sequence predicted from the DNA sequence was identical to that determined previously for SASP B, with the exception of the amino-terminal methionine predicted from the gene sequence which is presumably removed posttranslationally and an asparagine residue predicted at position 21 which was originally identified as an aspartate residue. The mRNA encoded by the SASP B gene is synthesized for only a discrete period midway in sporulation, in parallel with mRNAs coding for other SASPs. The small size of the SASP B mRNA (365 nucleotides) indicated that the mRNA is monocistronic. The SASP B gene itself hybridized strongly to only one band in Southern blots of restriction enzyme digests of B. megaterium DNA, suggesting that the SASP B gene is not a member of a highly conserved multigene family, as is the case for other SASP genes.

Full text

PDF
1023

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Connors M. J., Mason J. M., Setlow P. Cloning and nucleotide sequencing of genes for three small, acid-soluble proteins from Bacillus subtilis spores. J Bacteriol. 1986 May;166(2):417–425. doi: 10.1128/jb.166.2.417-425.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Connors M. J., Setlow P. Cloning of a small, acid-soluble spore protein gene from Bacillus subtilis and determination of its complete nucleotide sequence. J Bacteriol. 1985 Jan;161(1):333–339. doi: 10.1128/jb.161.1.333-339.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Curiel-Quesada E., Setlow B., Setlow P. Cloning of the gene for C protein, a low molecular weight spore-specific protein from Bacillus megaterium. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3250–3254. doi: 10.1073/pnas.80.11.3250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dignam S. S., Setlow P. In vivo and in vitro synthesis of the spore-specific proteins A and C of bacillus megaterium. J Biol Chem. 1980 Sep 25;255(18):8417–8423. [PubMed] [Google Scholar]
  6. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  7. Fliss E. R., Loshon C. A., Setlow P. Genes for Bacillus megaterium small, acid-soluble spore proteins: cloning and nucleotide sequence of three additional genes from this multigene family. J Bacteriol. 1986 Feb;165(2):467–473. doi: 10.1128/jb.165.2.467-473.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fliss E. R., Setlow P. Genes for Bacillus megaterium small, acid-soluble spore proteins: nucleotide sequence of two genes and their expression during sporulation. Gene. 1985;35(1-2):151–157. doi: 10.1016/0378-1119(85)90167-2. [DOI] [PubMed] [Google Scholar]
  9. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  10. Moran C. P., Jr, Lang N., LeGrice S. F., Lee G., Stephens M., Sonenshein A. L., Pero J., Losick R. Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. Mol Gen Genet. 1982;186(3):339–346. doi: 10.1007/BF00729452. [DOI] [PubMed] [Google Scholar]
  11. Rosenberg M., Court D. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet. 1979;13:319–353. doi: 10.1146/annurev.ge.13.120179.001535. [DOI] [PubMed] [Google Scholar]
  12. Setlow B., Setlow P. Localization of low-molecular-weight basic proteins in Bacillus megaterium spores by cross-linking with ultraviolet light. J Bacteriol. 1979 Aug;139(2):486–494. doi: 10.1128/jb.139.2.486-494.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Setlow P., Ozols J. Covalent structure of protein A. A low molecular weight protein degraded during germination of Bacillus megaterium spores. J Biol Chem. 1979 Dec 10;254(23):11938–11942. [PubMed] [Google Scholar]
  14. Setlow P., Ozols J. Covalent structure of protein C. A second major low molecular weight protein degraded during germination of Bacillus megaterium spores. J Biol Chem. 1980 Sep 25;255(18):8413–8416. [PubMed] [Google Scholar]
  15. Setlow P., Ozols J. The complete covalent structure of protein B. The third major protein degraded during germination of Bacillus megaterium spores. J Biol Chem. 1980 Nov 10;255(21):10445–10450. [PubMed] [Google Scholar]
  16. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  17. Young R. A., Davis R. W. Yeast RNA polymerase II genes: isolation with antibody probes. Science. 1983 Nov 18;222(4625):778–782. doi: 10.1126/science.6356359. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES