Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1953 Sep 30;98(4):373–397. doi: 10.1084/jem.98.4.373

STUDIES ON THE CHEMISTRY OF THE TRANSFORMING ACTIVITY

I. RESISTANCE TO PHYSICAL AND CHEMICAL AGENTS

Stephen Zamenhof 1, Hattie E Alexander 1, Grace Leidy 1
PMCID: PMC2136247  PMID: 13096662

Abstract

The transforming principles of Hemophilus influenzae have been purified by a new method including fractional extraction. The active molecule behaves in these extractions like the bulk of the DNA preparation. The minimal amount of DNA necessary for transformation appeared to be of the same order of magnitude as the amount of DNA in a single cell. Quantitative study has been made of the resistance of transforming activity to various agents. When subjected to heat, the temperature at which the activity starts to decrease corresponds rather closely to the temperature at which the viscosity of the bulk of the DNA preparations starts to decrease. Similar correspondence was found when the transforming principle was subjected to pH changes. This is further evidence that the behavior of the active molecules is similar to the behavior of the average DNA molecule of the preparation. The activity is reduced by exposure to low ionic strength and by dehydration. Desoxyribonuclease in concentrations less than 10–4 γ/cc. is able to destroy the activity; a lag period during which the activity but not the viscosity decreases has been observed. NaNO2 at pH 5.3, HCHO and 10–5 M Fe++ reduce or destroy the activity; the importance of intact amino groups in the DNA molecule for the activity is discussed. Several protein-denaturing, sterilizing, and mutagenic agents have been found to have no effect on the transforming activity.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALEXANDER H. E., LEIDY G. Determination of inherited traits of H. influenzae by desoxyribonucleic acid fractions isolated from type-specific cells. J Exp Med. 1951 Apr 1;93(4):345–359. doi: 10.1084/jem.93.4.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ALEXANDER H. E., LEIDY G. Induction of streptomycin resistance in sensitive Hemophilus influenzae by extracts containing desoxyribonucleic acid from resistant Hemophilus influenzae. J Exp Med. 1953 Jan;97(1):17–31. doi: 10.1084/jem.97.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. ALEXANDER H. E., REDMAN W. Transformation of type specificity of meningococci; change in heritable type induced by type-specific extracts containing desoxyribonucleic acid. J Exp Med. 1953 Jun;97(6):797–806. doi: 10.1084/jem.97.6.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Avery O. T., Macleod C. M., McCarty M. STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES : INDUCTION OF TRANSFORMATION BY A DESOXYRIBONUCLEIC ACID FRACTION ISOLATED FROM PNEUMOCOCCUS TYPE III. J Exp Med. 1944 Feb 1;79(2):137–158. doi: 10.1084/jem.79.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BUTLER J. A. V., JAMES D. W. F. Gel-like behaviour of deoxyribonucleic acid solutions. Nature. 1951 May 26;167(4256):844–845. doi: 10.1038/167844a0. [DOI] [PubMed] [Google Scholar]
  6. BUTLER J. A. V., SMITH K. A. Degradation of deoxyribonucleic acid by free radicals. Nature. 1950 May 27;165(4204):847–848. doi: 10.1038/165847a0. [DOI] [PubMed] [Google Scholar]
  7. Basu S. Sedimentation and Flexibility of Sodium Thymonucleate Molecule. Science. 1952 Apr 25;115(2991):465–466. doi: 10.1126/science.115.2991.465. [DOI] [PubMed] [Google Scholar]
  8. DEMEREC M., CAHN E. Studies of mutability in nutritionally deficient strains of Escherichia coli. I. Genetic analysis of five auxotrophic strains. J Bacteriol. 1953 Jan;65(1):27–36. doi: 10.1128/jb.65.1.27-36.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. ENGLESBERG E. The mutagenic action of formaldehyde on bacteria. J Bacteriol. 1952 Jan;63(1):1–11. doi: 10.1128/jb.63.1.1-11.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. ERRERA M. Nature de l'effet différé des rayons x sur l'acide désoxyribonucléique. Bull Soc Chim Biol (Paris) 1951;33(5-6):555–560. [PubMed] [Google Scholar]
  11. Fluke D., Drew R., Pollard E. Ionizing Particle Evidence for the Molecular Weight of the Pneumococcus Transforming Principle. Proc Natl Acad Sci U S A. 1952 Mar;38(3):180–187. doi: 10.1073/pnas.38.3.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. JUNGNER G. The Mg content of various nucleic acid compounds. Science. 1951 Apr 6;113(2936):378–379. doi: 10.1126/science.113.2936.378. [DOI] [PubMed] [Google Scholar]
  13. LINDERSTRØM-LANG K. Structure and enzymatic break-down of proteins. Cold Spring Harb Symp Quant Biol. 1950;14:117–126. doi: 10.1101/sqb.1950.014.01.016. [DOI] [PubMed] [Google Scholar]
  14. MARKO A. M., BUTLER G. C. The isolation of sodium desoxyribonucleate with sodium dodecyl sulfate. J Biol Chem. 1951 May;190(1):165–176. [PubMed] [Google Scholar]
  15. MIYAJI T., PRICE V. E. Protective effect of salt on reduction of viscosity of sodium thymonucleate solutions by heat. Proc Soc Exp Biol Med. 1950 Nov;75(2):311–313. doi: 10.3181/00379727-75-18182. [DOI] [PubMed] [Google Scholar]
  16. McCarty M., Avery O. T. STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES : II. EFFECT OF DESOXYRIBONUCLEASE ON THE BIOLOGICAL ACTIVITY OF THE TRANSFORMING SUBSTANCE. J Exp Med. 1946 Jan 31;83(2):89–96. [PMC free article] [PubMed] [Google Scholar]
  17. McCarty M., Avery O. T. STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES : III. AN IMPROVED METHOD FOR THE ISOLATION OF THE TRANSFORMING SUBSTANCE AND ITS APPLICATION TO PNEUMOCOCCUS TYPES II, III, AND VI. J Exp Med. 1946 Jan 31;83(2):97–104. [PMC free article] [PubMed] [Google Scholar]
  18. McCarty M. REVERSIBLE INACTIVATION OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES. J Exp Med. 1945 May 1;81(5):501–514. doi: 10.1084/jem.81.5.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McElroy W. D. Evidence for the Occurrence of Intermediates during Mutation. Science. 1952 Jun 6;115(2997):623–626. doi: 10.1126/science.115.2997.623. [DOI] [PubMed] [Google Scholar]
  20. NOVICK A., SZILARD L. Experiments on spontaneous and chemically induced mutations of bacteria growing in the Chemostat. Cold Spring Harb Symp Quant Biol. 1951;16:337–343. doi: 10.1101/sqb.1951.016.01.025. [DOI] [PubMed] [Google Scholar]
  21. Philpot J. S., Small P. A. The action of nitrous acid on pepsin. Biochem J. 1938 Mar;32(3):542–551. doi: 10.1042/bj0320542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. ROWEN J. W. Light-scattering studies of sodium desoxyribonucleate. Biochim Biophys Acta. 1953 Mar;10(3):391–401. doi: 10.1016/0006-3002(53)90270-4. [DOI] [PubMed] [Google Scholar]
  23. SCHOLES G., WEISS J. Chemical action of x-rays on nucleic acids and related substances in aqueous systems. 1. Degradation of nucleic acids, purines, pyrimidines, nucleosides and nucleotides by x-rays and by free radicals produced chemically. Biochem J. 1953 Mar;53(4):567–578. doi: 10.1042/bj0530567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. SHACK J., THOMPSETT J. M. Studies of the anomalous titration of calf thymus desoxypentose nucleic acid and nucleohistone. J Biol Chem. 1952 May;197(1):17–28. [PubMed] [Google Scholar]
  25. SIGNER R., SCHWANDER H. Isolierung hochmolekularer Nucleinsäure aus Kalbsthymus. Helv Chim Acta. 1949;32(3):853–859. doi: 10.1002/hlca.19490320328. [DOI] [PubMed] [Google Scholar]
  26. Stone W. S., Wyss O., Haas F. The Production of Mutations in Staphylococcus Aureus by Irradiation of the Substrate. Proc Natl Acad Sci U S A. 1947 Mar;33(3):59–66. doi: 10.1073/pnas.33.3.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. TAMM C., HODES M. E., CHARGAFF E. The formation apurinic acid from the desoxyribonucleic acid of calf thymus. J Biol Chem. 1952 Mar;195(1):49–63. [PubMed] [Google Scholar]
  28. THOMAS R. Sur l'existence, dans la molécule des acides nucléiques, d'une structure secondaire à liaisons labiles. Experientia. 1951 Jul 15;7(7):261–262. doi: 10.1007/BF02154543. [DOI] [PubMed] [Google Scholar]
  29. WEISS J. Possible biological significance of the action of ionizing radiations on nucleic acids. Nature. 1952 Mar 15;169(4298):460–461. doi: 10.1038/169460b0. [DOI] [PubMed] [Google Scholar]
  30. ZAMENHOF S., ALEXANDER H. E., LEIDY G. Biological activity of the nucleic acids. Can J Med Sci. 1953 Jun;31(3):252–262. doi: 10.1139/cjms53-026. [DOI] [PubMed] [Google Scholar]
  31. ZAMENHOF S., BRAWERMAN G., CHARGAFF E. On the desoxypentose nucleic acids from several microorganisms. Biochim Biophys Acta. 1952 Oct;9(4):402–405. doi: 10.1016/0006-3002(52)90184-4. [DOI] [PubMed] [Google Scholar]
  32. ZAMENHOF S., CHARGAFF E. Studies on the diversity and the native state of desoxypentose nucleic acids. J Biol Chem. 1950 Sep;186(1):207–219. [PubMed] [Google Scholar]
  33. ZAMENHOF S., CHARGAFF F. Studies on the desoxypentose nuclease of yeast and its specific cellular regulation. J Biol Chem. 1949 Sep;180(2):727–740. [PubMed] [Google Scholar]
  34. ZAMENHOF S., CHRGAFF E. Separation of deoxypentose and pentose nucleic acids. Nature. 1951 Oct 6;168(4275):604–605. doi: 10.1038/168604a0. [DOI] [PubMed] [Google Scholar]
  35. ZAMENHOF S., LEIDY G., ALEXANDER H. E., FITZGERALD P. L., CHARGAFF E. Purification of the desoxypentose nucleic acid of Hemophilus influenzae having transforming activity. Arch Biochem Biophys. 1952 Sep;40(1):50–55. doi: 10.1016/0003-9861(52)90072-6. [DOI] [PubMed] [Google Scholar]
  36. ZAMENHOF S., LEIDY G., FITZGERALD P. L., ALEXANDER H. E., CHARGAFF E. Polyribophosphate, the type-specific substance of Hemophilus influenzae, type b. J Biol Chem. 1953 Aug;203(2):695–704. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES