Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1953 Aug 1;98(2):157–172. doi: 10.1084/jem.98.2.157

INTRACELLULAR FORMS OF POX VIRUSES AS SHOWN BY THE ELECTRON MICROSCOPE (VACCINIA, ECTROMELIA, MOLLUSCUM CONTAGIOSUM)

William H Gaylord Jr 1, Joseph L Melnick 1
PMCID: PMC2136285  PMID: 13069658

Abstract

The intracellular development of three pox viruses has been studied with the electron microscope using thin sections of infected tissue. Cells infected with vaccinia, ectromelia, and molluscum contagiosum viruses all form developmental bodies preliminary to the production of mature virus. Developmental bodies, believed to be virus precursors, are round to oval, slightly larger than mature virus particles, less dense to electrons, and have a more varied morphology. It is suggested as a working hypothesis that the process of maturation of a virus particle takes place as follows. In the earliest form the developmental bodies appear as hollow spheres, imbedded in a very dense cytoplasmic mass constituting an inclusion body, or in a less dense matrix near the nucleus in cells without typical inclusion bodies. The spheres become filled with a homogeneous material of low electron density. A small, dense granule appears in each developmental body and grows in size at the expense of the low density material. Following growth of the granule, particles are found with the dimensions of mature virus and having complex internal structure resembling bars or dumbells. Mature virus is ovoid and very dense to electrons. An "empty" interior may be found within its thick walls.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ACKERMANN W. W., KURTZ H. The relation of herpes virus to host cell mitochondria. J Exp Med. 1952 Aug;96(2):151–157. doi: 10.1084/jem.96.2.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ANDERSON N. G., WILBUR K. M. Studies on isolated cell components. J Gen Physiol. 1951 May;34(5):647–656. doi: 10.1085/jgp.34.5.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. ANDERSON T. F., RAPPAPORT C., MUSCATINE N. A. On the structure and osmotic properties of phage particles. Ann Inst Pasteur (Paris) 1953 Jan;84(1):5–14. [PubMed] [Google Scholar]
  4. BANFIELD W. G., BUNTING H., STRAUSS M. J., MELNICK J. L. Electronmicrographs of thin sections of Molluscum contagiosum. Proc Soc Exp Biol Med. 1951 Aug;77(4):843–847. doi: 10.3181/00379727-77-18944. [DOI] [PubMed] [Google Scholar]
  5. BANG F. B. Cellular changes in the chick chorio-allantoic membrane infected with herpes simplex and vaccinia; a study with thin sections for the electron microscope. Bull Johns Hopkins Hosp. 1950 Dec;87(6):511–547. [PubMed] [Google Scholar]
  6. BANG F. B. Cellular pathology of virus infections as seen with the electron microscope. Ann N Y Acad Sci. 1952 Jul 10;54(6):892–901. doi: 10.1111/j.1749-6632.1952.tb39964.x. [DOI] [PubMed] [Google Scholar]
  7. EPSTEIN B., REISSIG M., DE ROBERTIS E. Studies by electron microscopy of thin sections of infectious myxomatosis in rabbits. J Exp Med. 1952 May;95(5):347–354. doi: 10.1084/jem.96.4.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FENNER F., DAY M. F., WOODROOFE G. M. The mechanism of the transmission of myxomatosis in the European rabbit (Oryctolagus cuniculus) by the mosquito Aedes aegypti. Aust J Exp Biol Med Sci. 1952 Apr;30(2):139–152. doi: 10.1038/icb.1952.13. [DOI] [PubMed] [Google Scholar]
  9. GAYLORD W. H., Jr, MELNICK J. L. Developmental forms of vaccinia virus. Science. 1953 Jan 2;117(3027):10–13. doi: 10.1126/science.117.3027.10. [DOI] [PubMed] [Google Scholar]
  10. Green R. H., Anderson T. F., Smadel J. E. MORPHOLOGICAL STRUCTURE OF THE VIRUS OF VACCINIA. J Exp Med. 1942 Jun 1;75(6):651–656. doi: 10.1084/jem.75.6.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LATTA H., HARTMANN J. F. Use of a glass edge in thin sectioning for electron microscopy. Proc Soc Exp Biol Med. 1950 Jun;74(2):436–439. doi: 10.3181/00379727-74-17931. [DOI] [PubMed] [Google Scholar]
  12. LEVINTHAL C., FISHER H. The structural development of a bacterial virus. Biochim Biophys Acta. 1952 Oct;9(4):419–429. doi: 10.1016/0006-3002(52)90187-x. [DOI] [PubMed] [Google Scholar]
  13. MORGAN C., WYCKOFF R. W. G. The electron microscopy of fowl pox virus within the chorioallantoic membrane. J Immunol. 1950 Aug;65(2):285–295. [PubMed] [Google Scholar]
  14. Newman S. B., Borysko E., Swerdlow M. New Sectioning Techniques for Light and Electron Microscopy. Science. 1949 Jul 15;110(2846):66–68. doi: 10.1126/science.110.2846.66. [DOI] [PubMed] [Google Scholar]
  15. PALADE G. E. A study of fixation for electron microscopy. J Exp Med. 1952 Mar;95(3):285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. SCHWERDT C. E., PARDEE A. B. The intracellular distribution of Lansing poliomyelitis virus in the central nervous system of infected cotton rats. J Exp Med. 1952 Aug;96(2):121–136. doi: 10.1084/jem.96.2.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. TRENTIN J. J., BRIODY B. A. An outbreak of mouse-pox (infectious estromelia) in the United States. II. Definitive diagnosis. Science. 1953 Feb 27;117(3035):227–228. doi: 10.1126/science.117.3035.227. [DOI] [PubMed] [Google Scholar]
  18. Tyzzer E. E. The Etiology and Pathology of Vaccinia. J Med Res. 1904 Feb;11(1):180–229. [PMC free article] [PubMed] [Google Scholar]
  19. Wyckoff R. W. The Virus of Vaccinia in Chick Embryo Membrane. Proc Natl Acad Sci U S A. 1951 Sep;37(9):565–569. doi: 10.1073/pnas.37.9.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. ZOLLINGER H. U. Les mitochondries; leur étude à l'aide du microscope à contraste de phases. Rev Hematol. 1950;5(5-6):696–745. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES