Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1956 May 1;103(5):653–666. doi: 10.1084/jem.103.5.653

ACTION OF X-RAYS ON MAMMALIAN CELLS

Theodore T Puck 1, Philip I Marcus 1
PMCID: PMC2136626  PMID: 13319584

Abstract

The effects of x-irradiation have been quantitatively studied on single cells of a human cervical carcinoma (HeLa) under conditions such that 100 per cent of the unirradiated cells reproduce in isolation to form macroscopic colonies. This technique eliminates complexities due to interactions of members of large cell populations. Survival of single cells (defined as the ability to form a macroscopic colony within 15 days) yields a typical 2 hit curve when plotted against x-ray dose. The initial shoulder extends to about 75 r, after which a linear logarithmic survival rate is obtained, in which the dose needed to reduce survivors to 37 per cent is 96 r. This radiation sensitivity is tens to hundreds of times greater than that of any microorganism for which the equivalent function bas been studied. Evidence, though not proof, is presented that the lethal effect is due to a radiation-induced genetic defect which, however, cannot be a simple single gene inactivation. The locus of the action could be chromosomal. Beginning at doses of 100 r, or possibly earlier, growth-delaying effects of radiation are visible. Cells in which the ability to reproduce has been destroyed by doses below 800 r, can still multiply several times. At higher doses even a single cell division is precluded. A large proportion of the cells killed by radiation at any dose gives rise to one or more giant cells. These metabolize actively, grow to huge proportions but never reproduce under the experimental conditions employed. Methods of preparing large populations of giant cells are described. These giants are particularly susceptible to virus action. Some of the irradiated cells disappear from the plate, presumably by disintegration. This action of radiation is by far the least efficient, since even after 10,000 r, 5 to 10 per cent of the original cell inoculum is recoverable as giants.

Full Text

The Full Text of this article is available as a PDF (977.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atwood K. C., Norman A. On the Interpretation of Multi-Hit Survival Curves. Proc Natl Acad Sci U S A. 1949 Dec;35(12):696–709. doi: 10.1073/pnas.35.12.696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. LUCKE W. H., SARACHEK A. X-ray inactivation of polyploid Saccharomyces. Nature. 1953 Jun 6;171(4362):1014–1015. doi: 10.1038/1711014a0. [DOI] [PubMed] [Google Scholar]
  3. Luria S. E. Reactivation of Irradiated Bacteriophage by Transfer of Self-Reproducing Units. Proc Natl Acad Sci U S A. 1947 Sep;33(9):253–264. doi: 10.1073/pnas.33.9.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Newcombe H. B. Delayed Phenotypic Expression of Spontaneous Mutations in Escherichia Coli. Genetics. 1948 Sep;33(5):447–476. doi: 10.1093/genetics/33.5.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. PUCK T. T., MARCUS P. I., CIECIURA S. J. Clonal growth of mammalian cells in vitro; growth characteristics of colonies from single HeLa cells with and without a feeder layer. J Exp Med. 1956 Feb 1;103(2):273–283. doi: 10.1084/jem.103.2.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Puck T. T., Marcus P. I. A RAPID METHOD FOR VIABLE CELL TITRATION AND CLONE PRODUCTION WITH HELA CELLS IN TISSUE CULTURE: THE USE OF X-IRRADIATED CELLS TO SUPPLY CONDITIONING FACTORS. Proc Natl Acad Sci U S A. 1955 Jul 15;41(7):432–437. doi: 10.1073/pnas.41.7.432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. REID T. R., GIFFORD M. P. A quantitative study of the effects of x radiation on cells in vitro. J Natl Cancer Inst. 1952 Oct;13(2):431–439. [PubMed] [Google Scholar]
  8. SCHERER W. F., SYVERTON J. T., GEY G. O. Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med. 1953 May;97(5):695–710. doi: 10.1084/jem.97.5.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. STROUD A. N., BRUES A. M. Radiation effects in tissue culture. Tex Rep Biol Med. 1954;12(4):931–944. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES