Abstract
The biochemistry of interallelic complementation within the Salmonella typhimurium hisD gene was investigated by in vitro protein complementation of mutant histidinol dehydrogenases (EC 1.1.1.23). Double-mutant strains were constructed containing the hisO1242 (constitutive overproducer) attenuator mutation and selected hisDa or hisDb mutations. Extracts from such hisDa986 and hisDb1799 mutant cells failed to show histidinol dehydrogenase activity but complemented to produce active enzyme. Inactive mutant histidinol dehydrogenases were purified from each of the two mutants by ion-exchange chromatography. Complementation by the purified mutant proteins required the presence of 2-mercaptoethanol and MnCl2, and protein-protein titrations indicated that heterodimers were strongly preferred in mixtures of the complementary mutant enzymes. Neither mutant protein showed negative complementation with wild-type enzyme. The Vmax for hybrid histidinol dehydrogenase was 11% of that for native enzyme, with only minor changes in Km values for substrate or coenzyme. Both purified mutant proteins failed to catalyze NAD-NADH exchange reactions reflective of the first catalytic step of the two-step reaction. The inactive enzymes bound 54Mn2+ weakly or not at all in the presence of 2-mercaptoethanol, in contrast to wild-type enzyme which bound 54Mn2+ to 0.6 sites per monomer under the same conditions. The mutant proteins, like wild-type histidinol dehydrogenase, behaved as dimers on analytical gel filtration chromatography, but dissociated to form monomers in the presence of 2-mercaptoethanol. This effect of 2-mercaptoethanol was prevented by low levels of MnCl2. It thus appears that mutant histidinol dehydrogenase molecules bind metal ion poorly. The complementation procedure may allow for formation of a functional Mn2+-binding site, perhaps at the subunit interface.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADAMS E. L-Histidinal, a biosynthetic precursor of histidine. J Biol Chem. 1955 Nov;217(1):325–344. [PubMed] [Google Scholar]
- Bürger E., Görisch H., Lingens F. The catalytically active form of histidinol dehydrogenase from Salmonella typhimurium. Biochem J. 1979 Sep 1;181(3):771–774. doi: 10.1042/bj1810771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bürger E., Görisch H. Patterns of product inhibition of a bifunctional dehydrogenase; L-histidinol:NAD+ oxidoreductase. Eur J Biochem. 1981 May;116(1):137–142. doi: 10.1111/j.1432-1033.1981.tb05311.x. [DOI] [PubMed] [Google Scholar]
- Chiariotti L., Alifano P., Carlomagno M. S., Bruni C. B. Nucleotide sequence of the Escherichia coli hisD gene and of the Escherichia coli and Salmonella typhimurium hisIE region. Mol Gen Genet. 1986 Jun;203(3):382–388. doi: 10.1007/BF00422061. [DOI] [PubMed] [Google Scholar]
- Cross R. L., Grubmeyer C., Penefsky H. S. Mechanism of ATP hydrolysis by beef heart mitochondrial ATPase. Rate enhancements resulting from cooperative interactions between multiple catalytic sites. J Biol Chem. 1982 Oct 25;257(20):12101–12105. [PubMed] [Google Scholar]
- Donahue T. F., Farabaugh P. J., Fink G. R. The nucleotide sequence of the HIS4 region of yeast. Gene. 1982 Apr;18(1):47–59. doi: 10.1016/0378-1119(82)90055-5. [DOI] [PubMed] [Google Scholar]
- Eccleston E. D., Thayer M. L., Kirkwood S. Mechanisms of action of histidinol dehydrogenase and UDP-Glc dehydrogenase. Evidence that the half-reactions proceed on separate subunits. J Biol Chem. 1979 Nov 25;254(22):11399–11404. [PubMed] [Google Scholar]
- Fan D. P., Schlesinger M. J., Torriani A., Barrett K. J., Levinthal C. Isolation and characterization of complementation products of Escherichia coli alkaline phosphatase. J Mol Biol. 1966 Jan;15(1):32–48. doi: 10.1016/s0022-2836(66)80207-3. [DOI] [PubMed] [Google Scholar]
- Greeb J., Atkins J. F., Loper J. C. Histidinol dehydrogenase (his D) mutants of Salmonella typhimurium. J Bacteriol. 1971 May;106(2):421–431. doi: 10.1128/jb.106.2.421-431.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grubmeyer C. T., Chu K. W., Insinga S. Kinetic mechanism of histidinol dehydrogenase: histidinol binding and exchange reactions. Biochemistry. 1987 Jun 16;26(12):3369–3373. doi: 10.1021/bi00386a018. [DOI] [PubMed] [Google Scholar]
- Grubmeyer C. T., Gray W. R. A cysteine residue (cysteine-116) in the histidinol binding site of histidinol dehydrogenase. Biochemistry. 1986 Aug 26;25(17):4778–4784. doi: 10.1021/bi00365a009. [DOI] [PubMed] [Google Scholar]
- Ino I., Hartman P. E., Hartman Z., Yourno J. Deletions fusing the hisG and hisD genes in Salmonella typhimurium. J Bacteriol. 1975 Sep;123(3):1254–1264. doi: 10.1128/jb.123.3.1254-1264.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kohno T., Gray W. R. Chemical and genetic studies on L-histidinol dehydrogenase of Salmonella typhimurium. Isolation and structure of the tryptic peptides. J Mol Biol. 1981 Apr 15;147(3):451–464. doi: 10.1016/0022-2836(81)90495-2. [DOI] [PubMed] [Google Scholar]
- LOPER J. C., ADAMS E. PURIFICATION AND PROPERTIES OF HISTIDINOL DEHYDROGENASE FROM SALMONELLA TYPHIMURIUM. J Biol Chem. 1965 Feb;240:788–795. [PubMed] [Google Scholar]
- LOPER J. C., GRABNAR M., STAHL R. C., HARTMAN Z., HARTMAN P. E. GENES AND PROTEINS INVOLVED IN HISTIDINE BIOSYNTHESIS IN SALMONELLA. Brookhaven Symp Biol. 1964 Dec;17:15–52. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Loper J. C. Histidinol dehydrogenase from Salmonella typhimurium. Crystallization and composition studies. J Biol Chem. 1968 Jun 25;243(12):3264–3272. [PubMed] [Google Scholar]
- Murray M. L., Hartman P. E. Overproduction of hisH and hisF gene products leads to inhibition of cell cell division in Salmonella. Can J Microbiol. 1972 May;18(5):671–681. doi: 10.1139/m72-105. [DOI] [PubMed] [Google Scholar]
- Pearson P. H., Bridger W. A. Catalysis of a step of the overall reaction by the alpha subunit of Escherichia coli succinyl coenzyme A synthetase. J Biol Chem. 1975 Nov 10;250(21):8524–8529. [PubMed] [Google Scholar]
- Penefsky H. S. Reversible binding of Pi by beef heart mitochondrial adenosine triphosphatase. J Biol Chem. 1977 May 10;252(9):2891–2899. [PubMed] [Google Scholar]
- Truman P., Bergquist P. L. Genetic and biochemical characterization of some missense mutations in the lacZ gene of Escherichia coli K-12. J Bacteriol. 1976 Jun;126(3):1063–1074. doi: 10.1128/jb.126.3.1063-1074.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vallee B. L., Galdes A. The metallobiochemistry of zinc enzymes. Adv Enzymol Relat Areas Mol Biol. 1984;56:283–430. doi: 10.1002/9780470123027.ch5. [DOI] [PubMed] [Google Scholar]
- Yourno J. Composition and subunit structure of histidinol dehydrogenase from Salmonella typhimurium. J Biol Chem. 1968 Jun 25;243(12):3277–3288. [PubMed] [Google Scholar]

