Abstract
Rabbit antibody + complement alters the permeability properties of mouse Krebs ascites tumor cells and erythrocytes. When antibody + C' acts on ascites tumor cells in a low protein medium, intracellular K+ is lost from the cells at a rate far greater than the normal leak rate. At the same time the cells lose amino acids and ribonucleotides and become fully permeable to the Na+ of the medium. When antibody + C' acts in a low protein medium, the cells swell extensively and lose most of their macromolecules to the medium (hemoglobin from erythrocytes, protein and RNA from the ascites tumor cells). If the antibody + C' acts in a medium containing protein in sufficient concentration to balance the colloid osmotic pressure of the cells, the swelling is prevented; no macromolecules are then lost from the cells, but the loss of K+ and entrance of Na+ are not altered, and the loss of amino acids and ribonucleotides is only slightly affected. It therefore appears that the action of antibody + C' is to produce functional "holes" in the animal cell membrane which permit the equilibration of cations and small molecules between cell and medium. This leads to an increase in the osmotic pressure of the cell and a rapid influx of water. The cell membrane and its "holes" are thereby stretched, permitting macromolecules to escape from the cell.
Full Text
The Full Text of this article is available as a PDF (820.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- CREETH J. M. The use of the Gouy diffusiometer with dilute protein solutions; an assessment of the accuracy of the method. Biochem J. 1952 Apr;51(1):10–17. doi: 10.1042/bj0510010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davson H., Danielli J. F. Studies on the permeability of erythrocytes: Factors in cation permeability. Biochem J. 1938 Jun;32(6):991–1001. doi: 10.1042/bj0320991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davson H. Studies on the permeability of erythrocytes: The cation content of erythrocytes of rabbit's blood in hyper- and hypo-tonic sera. Biochem J. 1936 Mar;30(3):391–393. doi: 10.1042/bj0300391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EAGLE H. Nutrition needs of mammalian cells in tissue culture. Science. 1955 Sep 16;122(3168):501–514. doi: 10.1126/science.122.3168.501. [DOI] [PubMed] [Google Scholar]
- GOLDBERG B., GREEN H. The cytotoxic action of immune gamma globulin and complement on Krebs ascites tumor cells. I. Ultrastructural studies. J Exp Med. 1959 May 1;109(5):505–510. doi: 10.1084/jem.109.5.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GREEN H., FLEISCHER R. A., BARROW P., GOLDBERG B. The cytotoxic action of immune gamma globulin and complement on Krebs ascites tumor cells. II. Chemical studies. J Exp Med. 1959 May 1;109(5):511–521. doi: 10.1084/jem.109.5.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HEINZ E. The exchangeability of glycine accumulated by carcinoma cells. J Biol Chem. 1957 Mar;225(1):305–315. [PubMed] [Google Scholar]
- MAYER M. M., CROFT C. C., GRAY M. M. Kinetic studies on immune hemolysis; a method. J Exp Med. 1948 Oct 1;88(4):427–444. doi: 10.1084/jem.88.4.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAYER M. M. Studies on the mechanism of hemolysis by antibody and complement. Prog Allergy. 1958;5:215–270. [PubMed] [Google Scholar]
- SHEPPARD C. W., MARTIN W. R. Cation exchange between cells and plasma of mammalian blood; methods and application to potassium exchange in human blood. J Gen Physiol. 1950 Jul 20;33(6):703–722. doi: 10.1085/jgp.33.6.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SOLOMON A. K. The permeability of red cells to water and ions. Ann N Y Acad Sci. 1958 Oct 13;75(1):175–181. doi: 10.1111/j.1749-6632.1958.tb36863.x. [DOI] [PubMed] [Google Scholar]
- SOLOMON A. K. The permeability of the human erythrocyte to sodium and potassium. J Gen Physiol. 1952 May;36(1):57–110. doi: 10.1085/jgp.36.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]