Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1987 Sep;169(9):4184–4189. doi: 10.1128/jb.169.9.4184-4189.1987

Genetic analysis of agrocin 84 production and immunity in Agrobacterium spp.

M H Ryder, J E Slota, A Scarim, S K Farrand
PMCID: PMC213727  PMID: 2442139

Abstract

Mutations affecting agrocin production on the 48-kilobase (kb) plasmid, pAgK84, can be complemented in trans with cloned portions of the plasmid. Five complementation groups ranging in minimum size from 1.2 to 5.6 kb were identified within a 14-kb segment. Plasmid pAgK84-encoded immunity to agrocin 84 was located to two separate regions of the plasmid. Either region alone was sufficient to protect sensitive strains, and both loci mapped to the agrocin 84 biosynthesis region. One region is located within complementation group I, while the other forms a part of complementation group IV. Production of agrocin 84 was unaffected by nopaline, agrocinopine A, acetosyringone, or low or high levels of ferric iron. Agrocin 84 production was greatly suppressed when the strain also contained a Ti plasmid nutritionally or mutationally derepressed for agrocinopine A catabolism. RNA dot-blot analysis indicated that decreased agrocin 84 production by such strains was not due to transcriptional repression of agrocin 84 biosynthetic loci. In strains also harboring pAtK84b, the opine catabolic plasmid of Agrobacterium radiobacter K84, induction of the agrocinopine A catabolic locus of this plasmid had no such effect on agrocin 84 production.

Full text

PDF
4184

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Engler G., Holsters M., Van Montagu M., Schell J., Hernalsteens J. P., Schilperoort Agrocin 84 sensitivity: a plasmid determined property in Agrobacterium tumefaciens. Mol Gen Genet. 1975 Jul 10;138(4):345–349. doi: 10.1007/BF00264804. [DOI] [PubMed] [Google Scholar]
  2. Farrand S. K., Slota J. E., Shim J. S., Kerr A. Tn5 insertions in the agrocin 84 plasmid: the conjugal nature of pAgK84 and the locations of determinants for transfer and agrocin 84 production. Plasmid. 1985 Mar;13(2):106–117. doi: 10.1016/0147-619x(85)90063-0. [DOI] [PubMed] [Google Scholar]
  3. Garfinkel D. J., Nester E. W. Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J Bacteriol. 1980 Nov;144(2):732–743. doi: 10.1128/jb.144.2.732-743.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Glisin V., Crkvenjakov R., Byus C. Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry. 1974 Jun 4;13(12):2633–2637. doi: 10.1021/bi00709a025. [DOI] [PubMed] [Google Scholar]
  5. Hendson M., Askjaer L., Thomson J. A., van Montagu M. Broad-Host-Range Agrocin of Agrobacterium tumefaciens. Appl Environ Microbiol. 1983 May;45(5):1526–1532. doi: 10.1128/aem.45.5.1526-1532.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Holsters M., de Waele D., Depicker A., Messens E., van Montagu M., Schell J. Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet. 1978 Jul 11;163(2):181–187. doi: 10.1007/BF00267408. [DOI] [PubMed] [Google Scholar]
  7. Kerr A., Tate M. E. Agrocins and the biological control of crown gall. Microbiol Sci. 1984 Apr;1(1):1–4. [PubMed] [Google Scholar]
  8. Kretschmer P. J., Cohen S. N. Selected translocation of plasmid genes: frequency and regional specificity of translocation of the Tn3 element. J Bacteriol. 1977 May;130(2):888–899. doi: 10.1128/jb.130.2.888-899.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Murphy P. J., Tate M. E., Kerr A. Substituents at N6 and C-5' control selective uptake and toxicity of the adenine-nucleotide bacteriocin, agrocin 84, in Agrobacteria. Eur J Biochem. 1981 Apr;115(3):539–543. doi: 10.1111/j.1432-1033.1981.tb06236.x. [DOI] [PubMed] [Google Scholar]
  10. Pischl D. L., Farrand S. K. Transposon-facilitated chromosome mobilization in Agrobacterium tumefaciens. J Bacteriol. 1983 Mar;153(3):1451–1460. doi: 10.1128/jb.153.3.1451-1460.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ryder M. H., Tate M. E., Jones G. P. Agrocinopine A, a tumor-inducing plasmid-coded enzyme product, is a phosphodiester of sucrose and L-arabinose. J Biol Chem. 1984 Aug 10;259(15):9704–9710. [PubMed] [Google Scholar]
  12. STONIER T. Agrobacterium tumefaciens Conn. II. Production of an antibiotic substance. J Bacteriol. 1960 Jun;79:889–898. doi: 10.1128/jb.79.6.889-898.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sciaky D., Montoya A. L., Chilton M. D. Fingerprints of Agrobacterium Ti plasmids. Plasmid. 1978 Feb;1(2):238–253. doi: 10.1016/0147-619x(78)90042-2. [DOI] [PubMed] [Google Scholar]
  14. Slota J. E., Farrand S. K. Genetic isolation and physical characterization of pAgK84, the plasmid responsible for agrocin 84 production. Plasmid. 1982 Sep;8(2):175–186. doi: 10.1016/0147-619x(82)90055-5. [DOI] [PubMed] [Google Scholar]
  15. Tate M. E., Murphy P. J., Roberts W. P., Keer A. Adenine N6-substituent of agrocin 84 determines its bacteriocin-like specificity. Nature. 1979 Aug 23;280(5724):697–699. doi: 10.1038/280697a0. [DOI] [PubMed] [Google Scholar]
  16. Watson B., Currier T. C., Gordon M. P., Chilton M. D., Nester E. W. Plasmid required for virulence of Agrobacterium tumefaciens. J Bacteriol. 1975 Jul;123(1):255–264. doi: 10.1128/jb.123.1.255-264.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES