Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1961 Jan 1;113(1):47–66. doi: 10.1084/jem.113.1.47

GLOMERULAR PERMEABILITY

I. FERRITIN TRANSFER ACROSS THE NORMAL GLOMERULAR CAPILLARY WALL

Marilyn G Farquhar 1, Steven L Wissig 1, George E Palade 1
PMCID: PMC2137334  PMID: 13698249

Abstract

Ferritin was used as a tracer to investigate pathways and mechanisms for transfer across the various layers of the glomerular capillary wall. Kidney tissue, fixed at intervals of 2 minutes to 2 hours following an intravenous injection of ferritin, was examined by electron microscopy. The observations confirmed the existence of three distinct and successive layers in the glomerular capillary wall (the endothelium, the basement membrane, and the visceral epithelium). In addition, they demonstrated a number of new structural features: namely (a) discrete fibrils in the subendothelial spaces; (b) a characteristic, highly elaborate, cytoplasmic organization in the visceral epithelium; and (c) special structures resembling "desmosomes" in the slits between foot processes. In animals sacrificed at short time intervals (2 to 15 minutes) following ferritin administration, ferritin molecules were found at high concentration in the lumen and endothelial fenestrae, at low concentration in the basement membrane, and in very small numbers within the epithelium. Later (1 to 2 hours), the tracer particles were still present in the lumen and within endothelial fenestrae, and, in addition, had accumulated on the luminal side of the basement membrane, especially in the axial regions of the vessels. Larger numbers of ferritin molecules were also found in the epithelium—in invaginations of the cell membrane at the base of the foot processes, and in various membrane-limited bodies (vesicles, multivesicular bodies, vacuoles, and dense bodies) present within the cytoplasm. These observations suggest that the endothelial fenestrae are patent and that the basement membrane is the main filtration barrier. Since the basement membrane has no demonstrable pores, it is probably not a simple sieve but presumably is a gel-like structure with two fine fibrillar components embedded in an amorphous matrix. Both the epithelium and endothelium may be concerned with building and maintaining this structure. Finally, the intracellular accumulation of particles in the epithelium suggests that the latter acts as a monitor that recovers, at least in part, the small amounts of protein which normally leak through the filter.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BENNETT H. S., LUFT J. H., HAMPTON J. C. Morphological classifications of vertebrate blood capillaries. Am J Physiol. 1959 Feb;196(2):381–390. doi: 10.1152/ajplegacy.1959.196.2.381. [DOI] [PubMed] [Google Scholar]
  2. CAULFIELD J. B. Effects of varying the vehicle for OsO4 in tissue fixation. J Biophys Biochem Cytol. 1957 Sep 25;3(5):827–830. doi: 10.1083/jcb.3.5.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHINARD F. P., VOSBURGH G. J., ENNS T. Transcapillary exchange of water and of other substances in certain organs of the dog. Am J Physiol. 1955 Nov;183(2):221–234. doi: 10.1152/ajplegacy.1955.183.2.221. [DOI] [PubMed] [Google Scholar]
  4. DE HARVEN E. A new technique for carbon films. J Biophys Biochem Cytol. 1958 Jan 25;4(1):133–134. doi: 10.1083/jcb.4.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FARQUHAR M. G., PALADE G. E. Segregation of ferritin in glomerular protein absorption droplets. J Biophys Biochem Cytol. 1960 Apr;7:297–304. doi: 10.1083/jcb.7.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FARRANT J. L. An electron microscopic study of ferritin. Biochim Biophys Acta. 1954 Apr;13(4):569–576. doi: 10.1016/0006-3002(54)90376-5. [DOI] [PubMed] [Google Scholar]
  7. FAWCETT D. W., SELBY C. C. Observations on the fine structure of the turtle atrium. J Biophys Biochem Cytol. 1958 Jan 25;4(1):63–72. doi: 10.1083/jcb.4.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GROTTE G., KNUTSON R. C., BOLLMAN J. L. The diffusion of dextrans of different molecular sizes to lymph and urine. J Lab Clin Med. 1951 Oct;38(4):577–582. [PubMed] [Google Scholar]
  9. HALL V. The protoplasmic basis of glomerular ultrafiltration. Am Heart J. 1957 Jul;54(1):1–9. doi: 10.1016/0002-8703(57)90073-x. [DOI] [PubMed] [Google Scholar]
  10. KURTZ S. M., MCMANUS J. F. A reconsideration of the development, structure, and disease of the human renal glomerulus. Am Heart J. 1959 Sep;58:357–371. doi: 10.1016/0002-8703(59)90152-8. [DOI] [PubMed] [Google Scholar]
  11. MARSHALL M. E., DEUTSCH H. F. Clearances of some proteins by the dog kidney. Am J Physiol. 1950 Nov;163(2):461–467. doi: 10.1152/ajplegacy.1950.163.2.461. [DOI] [PubMed] [Google Scholar]
  12. MOORE D. H., RUSKA H. The fine structure of capillaries and small arteries. J Biophys Biochem Cytol. 1957 May 25;3(3):457–462. doi: 10.1083/jcb.3.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MUELLER C. B. The structure of the renal glomerulus. Am Heart J. 1958 Feb;55(2):304–322. doi: 10.1016/0002-8703(58)90129-7. [DOI] [PubMed] [Google Scholar]
  14. ODLAND G. F. The fine structure of the interrelationship of cells in the human epidermis. J Biophys Biochem Cytol. 1958 Sep 25;4(5):529–538. [PMC free article] [PubMed] [Google Scholar]
  15. PALADE G. E. A study of fixation for electron microscopy. J Exp Med. 1952 Mar;95(3):285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. PAPPENHEIMER J. R. Passage of molecules through capillary wals. Physiol Rev. 1953 Jul;33(3):387–423. doi: 10.1152/physrev.1953.33.3.387. [DOI] [PubMed] [Google Scholar]
  17. PAPPENHEIMER J. R., RENKIN E. M., BORRERO L. M. Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability. Am J Physiol. 1951 Oct;167(1):13–46. doi: 10.1152/ajplegacy.1951.167.1.13. [DOI] [PubMed] [Google Scholar]
  18. PEASE D. C. Electron microscopy of the vascular bed of the kidney cortex. Anat Rec. 1955 Apr;121(4):701–721. doi: 10.1002/ar.1091210402. [DOI] [PubMed] [Google Scholar]
  19. PEASE D. C. Fine structures of the kidney seen by electron microscopy. J Histochem Cytochem. 1955 Jul;3(4):295–308. doi: 10.1177/3.4.295. [DOI] [PubMed] [Google Scholar]
  20. RHODIN J. Electron microscopy of the glomerular capillary wall. Exp Cell Res. 1955 Jun;8(3):572–574. doi: 10.1016/0014-4827(55)90136-1. [DOI] [PubMed] [Google Scholar]
  21. RICHTER G. W. A study of hemosiderosis with the aid of electron microscopy; with observations on the relationship between hemosiderin and ferritin. J Exp Med. 1957 Aug 1;106(2):203–218. doi: 10.1084/jem.106.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. ROBB-SMITH A. H. The reticulin riddle. J Mt Sinai Hosp N Y. 1957 Nov-Dec;24(6):1155–1164. [PubMed] [Google Scholar]
  23. SOTELO J. R., PORTER K. R. An electron microscope study of the rat ovum. J Biophys Biochem Cytol. 1959 Mar 25;5(2):327–342. doi: 10.1083/jcb.5.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. SPIRO D. The structural basis of proteinuria in man; electron microscopic studies of renal biopsy specimens from patients with lipid nephrosis, amyloidosis, and subacute and chronic glomerulonephritis. Am J Pathol. 1959 Jan-Feb;35(1):47–73. [PMC free article] [PubMed] [Google Scholar]
  25. WALLENIUS G. [Renal clearance of dextran as a measure of glomerular permeability]. Acta Soc Med Ups Suppl. 1954 Apr 8;59(4):1–91. [PubMed] [Google Scholar]
  26. WATSON M. L. Reduction of heating artifacts in thin sections examined in the electron microscope. J Biophys Biochem Cytol. 1957 Nov 25;3(6):1017–1022. doi: 10.1083/jcb.3.6.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. II. Application of solutions containing lead and barium. J Biophys Biochem Cytol. 1958 Nov 25;4(6):727–730. doi: 10.1083/jcb.4.6.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. YAMADA E. The fine structure of the renal glomerulus of the mouse. J Biophys Biochem Cytol. 1955 Nov 25;1(6):551–566. doi: 10.1083/jcb.1.6.551. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES