Abstract
The quantitative release of histamine by specific antigen from perfused, chopped, sensitized guinea pig lung has been used to study the effect of peptidase substrates and inhibitors on the anaphylactic reaction. The anaphylactic release of histamine is prevented by chymotrypsin substrates and inhibitors but not by trypsin, carboxypeptidase, or leucine aminopeptidase substrates or the soybean trypsin inhibitor. The chymotrypsin substrates and inhibitors appear to be acting on an antigen-antibody-activated step because these substances fail to inhibit if the tissue is washed free of them prior to antigen addition, and because there is complete desensitization of the tissue without histamine release when the antigen is added in the presence of these inhibitors. The inhibitors work equally well in tissue from passively sensitized animals or in tissue from animals actively sensitized with either ovalbumin or bovine gamma globulin. These observations suggest that activation of a chymotrypsin-like enzyme is a necessary condition for the anaphylactic release of histamine in guinea pig lung. Diisopropylfluophosphate is inhibitory when present at the time of antigen addition but not when the tissue is washed free of unfixed diisopropylfluophosphate prior to adding antigen. This indicates that diisopropylfluophosphate must be acting exclusively on an enzyme which exists in lung tissue in a precursor form resistant to diisopropylfluophosphate until activated by the antigen-antibody interaction. Thiol alkylating or oxidizing agents also prevent the anaphylactic release of histamine, but in contrast to the situation with diisopropylfluophosphate and the other chymotrypsin inhibitors, the phase of the anaphylactic reaction inhibited by N-ethylmaleimide is available prior to the antigen-antibody interaction. The similarities and differences between immune hemolysis and anaphylaxis in chopped guinea pig lung are considered in detail.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AUSTEN K. F., BROCKLEHURST W. E. Inhibition of the anaphylactic release of histamine from chopped guinea pig lung by chymotrypsin substrates and inhibitors. Nature. 1960 Jun 11;186:866–868. doi: 10.1038/186866a0. [DOI] [PubMed] [Google Scholar]
- BECKER E. L., WIRTZ G. H. The salt-sensitive step in immune hemolysis. Biochim Biophys Acta. 1959 Sep;35:291–292. doi: 10.1016/0006-3002(59)90377-4. [DOI] [PubMed] [Google Scholar]
- BENDITT E. P., ARASE M. An enzyme in mast cells with properties like chymotrypsin. J Exp Med. 1959 Sep 1;110:451–460. doi: 10.1084/jem.110.3.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CUSHMAN W. F., BECKER E. L., WIRTZ G. Concerning the mechanism of complement action. III. Inhibitors of complement activity. J Immunol. 1957 Jul;79(1):80–83. [PubMed] [Google Scholar]
- Dakin H. D. The Oxidation of Amino-Acids to Cyanides. Biochem J. 1916 Jun;10(2):319–323. doi: 10.1042/bj0100319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRUTON J. S., MYCEK M. J. Studies on beef spleen cathepsin C. Arch Biochem Biophys. 1956 Nov;65(1):11–20. doi: 10.1016/0003-9861(56)90172-2. [DOI] [PubMed] [Google Scholar]
- GOLDENBERG H., GOLDENBERG V., McLAREN A. D. An inquiry into the enzyme-catalyzed hydrolysis of leucine ethyl ester by chymotrypsin. Biochim Biophys Acta. 1951 May;7(1):110–114. doi: 10.1016/0006-3002(51)90009-1. [DOI] [PubMed] [Google Scholar]
- HEINICKE R. M., MORI R. Effect of diisopropylfluorophosphate on sulfhydryl proteases. Science. 1959 Jun 19;129(3364):1678–1678. doi: 10.1126/science.129.3364.1678. [DOI] [PubMed] [Google Scholar]
- HOGBERG B., UVNAS B. Further observations on the disruption of rat mesentery mast cells caused by compound 48/80, antigen-antibody reaction, lecithinase A and decylamine. Acta Physiol Scand. 1960 Mar 18;48:133–145. doi: 10.1111/j.1748-1716.1960.tb01853.x. [DOI] [PubMed] [Google Scholar]
- HUMPHREY J. H., JAQUES R. The release of histamine and 5-hydroxytryptamine (serotonin) from platelets by antigen-antibody reactions (in vitro). J Physiol. 1955 Apr 28;128(1):9–27. doi: 10.1113/jphysiol.1955.sp005289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- IZUMIYA N., FRUTON J. S. Specificity of cathepsin C. J Biol Chem. 1956 Jan;218(1):59–76. [PubMed] [Google Scholar]
- JANSEN E. F., NUTTING F. Inhibition of the proteinase and esterase activities of trypsin and chymotrypsin by diisopropyl fluorophosphate; crystallization of inhibited chymotrypsin. J Biol Chem. 1949 May;179(1):189–199. [PubMed] [Google Scholar]
- Kekwick R. A., Cannan R. K. The hydrogen ion dissociation curve of the crystalline albumin of the hen's egg. Biochem J. 1936 Feb;30(2):227–234. doi: 10.1042/bj0300227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MCILWAIN H., BUDDLE H. L. Techniques in tissue metabolism. I. A mechanical chopper. Biochem J. 1953 Feb;53(3):412–420. doi: 10.1042/bj0530412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MILLS S. E., LEVINE L. The inhibition of immune haemolysis by salicylaldoxime. Immunology. 1959 Oct;2:368–383. [PMC free article] [PubMed] [Google Scholar]
- MONGAR J. L., SCHILD H. O. Effect of temperature on the anaphylactic reaction. J Physiol. 1957 Feb 15;135(2):320–338. doi: 10.1113/jphysiol.1957.sp005713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MONGAR J. L., SCHILD H. O. Inhibition of the anaphylactic reaction. J Physiol. 1957 Feb 15;135(2):301–319. doi: 10.1113/jphysiol.1957.sp005712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MONGAR J. L., SCHILD H. O. The effect of calcium and pH on the anaphylactic reaction. J Physiol. 1958 Feb 17;140(2):272–284. doi: 10.1113/jphysiol.1958.sp005933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MOTA I. Action of anaphylactic shock and anaphylatoxin on mast cells and histamine in rats. Br J Pharmacol Chemother. 1957 Dec;12(4):453–456. doi: 10.1111/j.1476-5381.1957.tb00164.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MOTA I. Effect of antigen and octylamine on mast cells and histamine content of sensitized guinea-pig tissues. J Physiol. 1959 Oct;147:425–436. doi: 10.1113/jphysiol.1959.sp006253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OSLER A. G., HAWRISIAK M. M., OVARY Z., SIQUEIRA M., BIER O. G. Studies on the mechanism of hypersensitivity phenomena. II. The participation of complement in passive cutaneous anaphylaxis of the albino rat. J Exp Med. 1957 Dec 1;106(6):811–834. doi: 10.1084/jem.106.6.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RATNOFF O. D., LEPOW I. H. Some properties of an esterase derived from preparations of the first component of complement. J Exp Med. 1957 Aug 1;106(2):327–343. doi: 10.1084/jem.106.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RILEY J. F. Pharmacology and functions of the mast cells. Pharmacol Rev. 1955 Jun;7(2):267–277. [PubMed] [Google Scholar]
- SCHAYER R. W. Catabolism of physiological quantities of histamine in vivo. Physiol Rev. 1959 Jan;39(1):116–126. doi: 10.1152/physrev.1959.39.1.116. [DOI] [PubMed] [Google Scholar]
- SMITH E. L., LUMRY R., POLGLASE W. J. The van der Waals factor in carboxypeptidase interaction with inhibitors and substrates. J Phys Colloid Chem. 1951 Jan;55(1):125–134. doi: 10.1021/j150484a014. [DOI] [PubMed] [Google Scholar]
- SMITH E. L., SPACKMAN D. H. Leucine aminopeptidase. V. Activation, specificity, and mechanism of action. J Biol Chem. 1955 Jan;212(1):271–299. [PubMed] [Google Scholar]
- UDENFRIEND S., TITUS E., WEISSBACH H., PETERSON R. E. Biogenesis and metabolism of 5-hydroxyindole compounds. J Biol Chem. 1956 Mar;219(1):335–344. [PubMed] [Google Scholar]