Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1961 Jul 1;114(1):127–140. doi: 10.1084/jem.114.1.127

STUDIES ON THE CHEMICAL STRUCTURE OF THE STREPTOCOCCAL CELL WALL

I. THE IDENTIFICATION OF A MUCOPEPTIDE IN THE CELL WALLS OF GROUPS A AND A-VARIANT STREPTOCOCCI

Richard M Krause 1, Maclyn McCarty 1
PMCID: PMC2137441  PMID: 13754097

Abstract

Lysis of trypsinized Group A streptococcal cell walls with phage-associated lysin releases into solution dialyzable and non-dialyzable mucopeptide fractions composed of N-acetylglucosamine, N-acetylmuramic acid and alanine, glutamic acid, lysine, and glycine in addition to the characteristic group-specific carbohydrate. The latter substance contains appreciable amounts of N-acetylmuramic acid and the amino acids as well as N-acetylglucosamine and rhamnose. Hot formamide extraction of the cell walls results in a soluble fraction of group-specific carbohydrate and an insoluble residue. The Group A carbohydrate in this instance is composed of rhamnose and N-acetylglucosamine. The composition of the insoluble residue is similar to that of the mucopeptide fractions released from the cell wall by phage-associated lysin. This residue was shown by electron microscopy to be composed of discrete discs which appear similar in structure to the intact cell wall. The specific carbohydrate obtained by hot formamide extraction of Group A-variant cell walls was composed almost exclusively of rhamnose. The residue fraction was similar to that of Group A. The residue of cell walls extracted with hot formamide is extensively solubilized not only by phage-associated lysin and S. albus enzyme, but also by lysozyme, which has no measurable effect on the intact streptococcal cell wall.

Full Text

The Full Text of this article is available as a PDF (920.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CUMMINS C. S., HARRIS H. The chemical composition of the cell wall in some gram-positive bacteria and its possible value as a taxonomic character. J Gen Microbiol. 1956 Jul;14(3):583–600. doi: 10.1099/00221287-14-3-583. [DOI] [PubMed] [Google Scholar]
  2. GHUYSEN J. M., SALTON M. R. Acetylhexosamine compounds enzymically released from Micrococcus lysodeikticus cell walls. I. Isolation and composition of acetylhexosamine and acetylhexosamine-peptide complexes. Biochim Biophys Acta. 1960 Jun 3;40:462–472. doi: 10.1016/0006-3002(60)91387-1. [DOI] [PubMed] [Google Scholar]
  3. KRAUSE R. M. Studies on the bacteriophages of hemolytic streptococci. II. Antigens released from the streptococcal cell wall by a phage-associated lysin. J Exp Med. 1958 Dec 1;108(6):803–821. doi: 10.1084/jem.108.6.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Lancefield R. C. THE ANTIGENIC COMPLEX OF STREPTOCOCCUS HAEMOLYTICUS : I. DEMONSTRATION OF A TYPE-SPECIFIC SUBSTANCE IN EXTRACTS OF STREPTOCOCCUS HAEMOLYTICUS. J Exp Med. 1928 Jan 1;47(1):91–103. doi: 10.1084/jem.47.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. MANDELSTAM J., ROGERS H. J. The incorporation of amino acids into the cell-wall mucopeptide of staphylococci and the effect of antibiotics on the process. Biochem J. 1959 Aug;72:654–662. doi: 10.1042/bj0720654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. MCCARTY M. The lysis of group A hemolytic streptococci by extracellular enzymes of Streptomyces albus. II. Nature of the cellular substrate attacked by the lytic enzymes. J Exp Med. 1952 Dec;96(6):569–580. doi: 10.1084/jem.96.6.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. MCCARTY M. Variation in the group-specific carbohydrate of group A streptococci. II. Studies on the chemical basis for serological specificity of the carbohydrates. J Exp Med. 1956 Nov 1;104(5):629–643. doi: 10.1084/jem.104.5.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. MURPHY J. S. An agent derived from B. megaterium phage G which dissolves the bacterial cell wall. Virology. 1960 Jun;11:510–513. doi: 10.1016/0042-6822(60)90094-5. [DOI] [PubMed] [Google Scholar]
  9. PERKINS H. R., ROGERS H. J. The products of the partial acid hydrolysis of the mucopeptide from cell walls of Micrococcus lysodeikticus. Biochem J. 1959 Aug;72:647–654. doi: 10.1042/bj0720647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. REISSIG J. L., STORMINGER J. L., LELOIR L. F. A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem. 1955 Dec;217(2):959–966. [PubMed] [Google Scholar]
  11. SALTON M. R. J., HORNE R. W. Studies of the bacterial cell wall. II. Methods of preparation and some properties of cell walls. Biochim Biophys Acta. 1951 Jul;7(2):177–197. doi: 10.1016/0006-3002(51)90017-0. [DOI] [PubMed] [Google Scholar]
  12. SALTON M. R. The properties of lysozyme and its action on microorganisms. Bacteriol Rev. 1957 Jun;21(2):82–100. doi: 10.1128/br.21.2.82-100.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. STRANGE R. E., KENT L. H. The isolation, characterization and chemical synthesis of muramic acid. Biochem J. 1959 Feb;71(2):333–339. doi: 10.1042/bj0710333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. STRANGE R. E., POWELL J. F. Hexosamine-containing peptides in spores of Bacillus subtilis, B. megatherium and B. cereus. Biochem J. 1954 Sep;58(1):80–85. doi: 10.1042/bj0580080. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES