Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1962 Jan 1;115(1):83–105. doi: 10.1084/jem.115.1.83

STUDIES ON THE TRANSFERRINS OF ADULT SERUM, CORD SERUM, AND CEREBROSPINAL FLUID

THE EFFECT OF NEURAMINIDASE

W Carey Parker 1, Alexander G Bearn 1
PMCID: PMC2137480  PMID: 14483938

Abstract

Nine of the twelve known variants of human transferrin have been resolved by the action of neuraminidase into stepwise patterns of four additional slower moving components whose relative intensities depended upon the concentration of enzyme. These components appeared to represent the stepwise removal of the four sialic acid residues from the transferrin molecule, and at large enzyme concentrations, almost all of the transferrin was reduced to the position of the slowest moving component. In contrast, the electrophoretic mobilities of haptoglobin, ceruloplasmin, and α2-macroglobulin showed a gradual decrease with increasing neuraminidase concentration. The transferrins of chimpanzees, rhesus and cynomolgus monkeys, and cattle were resolved by neuraminidase into two slower moving components. These experiments suggested that the primate and cattle transferrins contained only two sialic acid residues accessible to the enzyme. Transferrins C, B2, and D1 and a cynomolgus monkey transferrin were purified from serum by starch block electrophoresis and cellulose chromatography. Ultracentrifugal analysis could detect no difference in sedimentation rate between transferrin C, the primate transferrin, and neuraminidase-treated transferrin C. The human transferrins showed no variation in amino acid composition, but the cynomolgus transferrin was approximately 20 per cent higher in serine content and 50 per cent lower in glucosamine than human transferrin C. Reactions of antigenic identity were obtained among five human transferrin variants but a reaction of only partial identity was obtained between transferrin C and the cynomolgus transferrin. The transferrin pattern of cord blood showed a prominent band in the position of transferrin C, accompanied by four faint slower moving bands which coincided with the four transferrin components produced by the action of neuraminidase on transferrin C. The transferrin pattern of cerebrospinal fluid in individuals homozygous for serum transferrin C showed two principal components, one of which appeared to contain no sialic acid. Haptoglobin, ceruloplasmin, and α2-macroglobulin were also present in cerebrospinal fluid.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASHTON G. C. Genetics of beta-globulin polymorphism in British cattle. Nature. 1958 Aug 9;182(4632):370–372. doi: 10.1038/182370a0. [DOI] [PubMed] [Google Scholar]
  2. BECKMAN L., HIRSCHFELD J., SODERBERG U. Transferrin variations in sera of Macaca irus. Acta Pathol Microbiol Scand. 1961;51:132–140. doi: 10.1111/j.1699-0463.1961.tb00352.x. [DOI] [PubMed] [Google Scholar]
  3. BUCHER T., MATZELT D., PETTE D. Papier-Elektrophorese von Liquor cerebrospinalis. Klin Wochenschr. 1952 Apr 1;30(13-14):325–330. doi: 10.1007/BF01478498. [DOI] [PubMed] [Google Scholar]
  4. CHOPPIN P. W., OSTERHOUT S., TAMM I. Immunological characteristics of N.Y. strains of influenza A virus from the 1957 pandemic. Proc Soc Exp Biol Med. 1958 Jul;98(3):513–520. doi: 10.3181/00379727-98-24092. [DOI] [PubMed] [Google Scholar]
  5. CLAUSEN J. Proteins in normal cerebrospinal fluid not found in serum. Proc Soc Exp Biol Med. 1961 May;107:170–172. doi: 10.3181/00379727-107-26569. [DOI] [PubMed] [Google Scholar]
  6. DE GROUCHY J. Electrophorèse de sérums humains à travers gel d'amidon et identification de la céruloplasmine, chez des sujets normaux ainsi que chez des sujets homozygotes et hétérozygotes pour le gène de la maladie de Wilson. Rev Fr Etud Clin Biol. 1958 Jun;3(6):621–624. [PubMed] [Google Scholar]
  7. EWERBECK H. Die elektrophoretische Darstellung normalen menschlichen Liquors. Klin Wochenschr. 1950 Oct 15;28(39-40):692–693. doi: 10.1007/BF01485609. [DOI] [PubMed] [Google Scholar]
  8. GAVRILESCO K., COURCON J., HILLION P., URIEL J., LEWIN J., GRABAR P. Etude du liquide céphalo-rachidien humain normal par la méthode immuno-électrophorétique. Bull Soc Chim Biol (Paris) 1955;37(7-8):803–807. [PubMed] [Google Scholar]
  9. GIBLETT E. R., HICKMAN C. G., SMITHIES O. Serum transferrins. Nature. 1959 Jun 6;183(4675):1589–1590. doi: 10.1038/1831589a0. [DOI] [PubMed] [Google Scholar]
  10. GOODMAN M., POULIK E. Effects of speciation on serum proteins in the genus Macaca with special reference to the polymorphic state of transferrin. Nature. 1961 Apr 8;190:171–172. doi: 10.1038/190171a0. [DOI] [PubMed] [Google Scholar]
  11. GRABAR P., WILLIAMS C. A. Méthode permettant l'étude conjuguée des proprietés électrophorétiques et immunochimiques d'un mélange de protéines; application au sérum sanguin. Biochim Biophys Acta. 1953 Jan;10(1):193–194. doi: 10.1016/0006-3002(53)90233-9. [DOI] [PubMed] [Google Scholar]
  12. HIRS C. H. The oxidation of ribonuclease with performic acid. J Biol Chem. 1956 Apr;219(2):611–621. [PubMed] [Google Scholar]
  13. KUNKEL H. G. Zone electrophoresis. Methods Biochem Anal. 1954;1:141–170. doi: 10.1002/9780470110171.ch6. [DOI] [PubMed] [Google Scholar]
  14. MOORE S., STEIN W. H. Chromatography of amino acids on starch columns; solvent mixtures for the fractionation of protein hydrolysates. J Biol Chem. 1949 Mar;178(1):53–77. [PubMed] [Google Scholar]
  15. MURPHY W. H., GOTTSCHALK A. Studies on mucoproteins. VII. The linkage of the prosthetic group to aspartic and glutamic acid residues in bovine submaxillary gland mucoprotein. Biochim Biophys Acta. 1961 Sep 16;52:349–360. doi: 10.1016/0006-3002(61)90684-9. [DOI] [PubMed] [Google Scholar]
  16. PARKER W. C., BEARN A. G. Alterations in sialic acid content of human transferrin. Science. 1961 Mar 31;133(3457):1014–1016. doi: 10.1126/science.133.3457.1014. [DOI] [PubMed] [Google Scholar]
  17. PERLMANN G. E., TAMM I., HORSFALL F. L., Jr An electrophoretic examination of a urinary mucoprotein which reacts with various viruses. J Exp Med. 1952 Jan;95(1):99–104. doi: 10.1084/jem.95.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. PERT J. H., KUTT H. Zone electrophoresis of cerebrospinal fluid proteins in starch gel. Proc Soc Exp Biol Med. 1958 Oct;99(1):181–185. doi: 10.3181/00379727-99-24288. [DOI] [PubMed] [Google Scholar]
  19. POULIK M. D. Interaction of transferrin, haptoglobin and other serum proteins with neuraminidase of diphtheria toxin. Clin Chim Acta. 1961 Jul;6:493–502. doi: 10.1016/0009-8981(61)90138-3. [DOI] [PubMed] [Google Scholar]
  20. POULIK M. D. Starch-gel immunoelectrophoresis. J Immunol. 1959 Jun;82(6):502–515. [PubMed] [Google Scholar]
  21. PREER J. R., Jr A quantitative study of a technique of double diffusion in agar. J Immunol. 1956 Jul;77(1):52–60. [PubMed] [Google Scholar]
  22. Parker W. C., Bearn A. G. Haptoglobin and Transferrin Gene Frequencies in a Navajo Population: A New Transferrin Variant. Science. 1961 Jul 14;134(3472):106–108. doi: 10.1126/science.134.3472.106. [DOI] [PubMed] [Google Scholar]
  23. RAUSEN A. R., GERALD P. S., DIAMOND L. K. Genetical evidence for synthesis of transferrin in the foetus. Nature. 1961 Oct 14;192:182–182. doi: 10.1038/192182a0. [DOI] [PubMed] [Google Scholar]
  24. RAUSEN A. R., GERALD P. S., DIAMOND L. K. Haptoglobin patterns in cord blood serums. Nature. 1961 Aug 12;191:717–717. doi: 10.1038/191717a0. [DOI] [PubMed] [Google Scholar]
  25. RIOU G., GOSSE C., BLUSSON J. [Comparative electrophoresis on starch gel of the serum from maternal blood and cord blood]. Rev Fr Etud Clin Biol. 1961 Apr;6:364–368. [PubMed] [Google Scholar]
  26. SCHULTZE H. E., SCHMIDTBERGER R., HAUPT H. Untersuchungen über die gebundenen Kohlenhydrate in isolierten Plasmaproteiden. Biochem Z. 1958;329(6):490–507. [PubMed] [Google Scholar]
  27. SMITHIES O. An improved procedure for starch-gel electrophoresis: further variations in the serum proteins of normal individuals. Biochem J. 1959 Mar;71(3):585–587. doi: 10.1042/bj0710585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Smithies O, Hickman C G. Inherited Variations in the Serum Proteins of Cattle. Genetics. 1958 May;43(3):374–385. doi: 10.1093/genetics/43.3.374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. TYRRELL D. A. J., HORSFALL F. L., Jr A procedure which eliminates nonspecific inhibitor from human serum but does not affect specific antibodies against influenza viruses. J Immunol. 1952 Nov;69(5):563–574. [PubMed] [Google Scholar]
  30. WALLENIUS G. Electrophoretic patterns of cerebrospinal fluid and serum compared in normal and pathological conditions. Acta Soc Med Ups. 1952;57(3-4):138–146. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES