Abstract
When lymph node fragments from previously immunized rabbits were stimulated in vitro to produce a secondary response, the continuous presence of 50 µg/ml (0.15 mM) of chloramphenicol in the medium during the entire incubation period of 15 to 21 days produced nearly complete suppression of the response. Concentrations as low as 5 µg/ml (0.015 mM) produced approximately 80 per cent suppression of the response. When 50 µg/ml of chloramphenicol was present during only the first 6 days of culture, the secondary response was reduced 90 per cent. When it was absent for the first 6 days but present for the next 9 to 15 days, the response was reduced only 40 per cent. Since over 95 per cent of the antibody of the secondary response in most experiments appeared in the medium after the 6th day, chloramphenicol apparently inhibits antibody production by interfering with some early phase of the response. It is suggested that this interference involves messenger RNA and that animal cells have appeared resistant to this drug only because their complement of messenger RNA present when the drug has been added is stable over the short periods during which protein synthesis has usually been studied.
Full Text
The Full Text of this article is available as a PDF (787.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLEN E. H., SCHWEET R. S. Synthesis of hemoglobin in a cell-free system. I. Properties of the complete system. J Biol Chem. 1962 Mar;237:760–767. [PubMed] [Google Scholar]
- ALLFREY V. G., MIRSKY A. E. Protein synthesis in isolated cell nuclei. Nature. 1955 Dec 3;176(4492):1042–1049. doi: 10.1038/1761042a0. [DOI] [PubMed] [Google Scholar]
- BORSOOK H. A rate-governing reaction of protein synthesis. Nature. 1958 Oct 11;182(4641):1006–1007. doi: 10.1038/1821006a0. [DOI] [PubMed] [Google Scholar]
- BORSOOK H., FISCHER E. H., KEIGHLEY G. Factors affecting protein synthesis in vitro in rabbit reticulocytes. J Biol Chem. 1957 Dec;229(2):1059–1070. [PubMed] [Google Scholar]
- BREITMAN T. R., WEBSTER G. C. Effect of chloramphenicol on protein and nucleic acid synthesis in isolated thymus nuclei. Biochim Biophys Acta. 1958 Feb;27(2):408–409. doi: 10.1016/0006-3002(58)90350-0. [DOI] [PubMed] [Google Scholar]
- DJORDJEVIC B., SZYBALSKI W. Genetics of human cell lines. III. Incorporation of 5-bromo- and 5-iododeoxyuridine into the deoxyribonucleic acid of human cells and its effect on radiation sensitivity. J Exp Med. 1960 Sep 1;112:509–531. doi: 10.1084/jem.112.3.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EHRICH W. E., DRABKIN D. L., FORMAN C. Nucleic acids and the production of antibody by plasma cells. J Exp Med. 1949 Aug 1;90(2):157–168. doi: 10.1084/jem.90.2.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FINNEY D. J., HAZLEWOOD T., SMITH M. J. Logarithms to base 2. J Gen Microbiol. 1955 Apr;12(2):222–225. doi: 10.1099/00221287-12-2-222. [DOI] [PubMed] [Google Scholar]
- FOGH J., HACKER C. Elimination of pleuropneumonia-like organisms from cell cultures. Exp Cell Res. 1960 Oct;21:242–244. doi: 10.1016/0014-4827(60)90374-8. [DOI] [PubMed] [Google Scholar]
- FOLLETTE J. H., SHUGARMAN P. M., REYNOLDS J., VALENTINE W. N., LAWRENCE J. S. The effect of chloramphenicol and other antibiotics on leukocyte respiration. Blood. 1956 Mar;11(3):234–242. [PubMed] [Google Scholar]
- GALE E. F., FOLKES J. P. The assimilation of amino-acids by bacteria. XV. Actions of antibiotics on nucleic acid and protein synthesis in Staphylococcus aureus. Biochem J. 1953 Feb;53(3):493–498. doi: 10.1042/bj0530493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOLDBERG I. H., RABINOWITZ M. Actionmycin D inhibition of deoxyribonucleic acid-dependent synthesis of ribonucleic acid. Science. 1962 Apr 27;136(3513):315–316. doi: 10.1126/science.136.3513.315. [DOI] [PubMed] [Google Scholar]
- HAHN F. E., WOLFE A. D. Mode of action of chloramphenicol. VIII. Resemblance between labile chloramphenicol-RNA and DNA of Bacillus cereus. Biochem Biophys Res Commun. 1962 Jan 24;6:464–468. doi: 10.1016/0006-291x(62)90376-5. [DOI] [PubMed] [Google Scholar]
- ISHIHAMA A., MIZUNO N., TAKAI M., OTAKA E., OSAWA S. Molecular and metabolic properties of messenger RNA from normal and T2-infected Escherichia coli. J Mol Biol. 1962 Sep;5:251–264. doi: 10.1016/s0022-2836(62)80069-2. [DOI] [PubMed] [Google Scholar]
- LAMBORG M. R., ZAMECNIK P. C. Amino acid incorporation into protein by extracts of E. coli. Biochim Biophys Acta. 1960 Aug 12;42:206–211. doi: 10.1016/0006-3002(60)90782-4. [DOI] [PubMed] [Google Scholar]
- LEPAGE G. A. Effects of chloramphenicol on incorporation of glycine-2-C14 into mammalian tumor cell proteins and purines. Proc Soc Exp Biol Med. 1953 Aug-Sep;83(4):724–726. doi: 10.3181/00379727-83-20474. [DOI] [PubMed] [Google Scholar]
- LEVINTHAL C., KEYNAN A., HIGA A. Messenger RNA turnover and protein synthesis in B. subtilis inhibited by actinomycin D. Proc Natl Acad Sci U S A. 1962 Sep 15;48:1631–1638. doi: 10.1073/pnas.48.9.1631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MATTHAEI J. H., NIRENBERG M. W. Characteristics and stabilization of DNAase-sensitive protein synthesis in E. coli extracts. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1580–1588. doi: 10.1073/pnas.47.10.1580. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MICHAELIDES M. C., COONS A. H. Studies on antibody production. V. The secondary response in vitro. J Exp Med. 1963 Jun 1;117:1035–1051. doi: 10.1084/jem.117.6.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NATHANS D., LIPMANN F. Amino acid transfer from aminoacyl-ribonucleic acids to protein on ribosomes of Escherichia coli. Proc Natl Acad Sci U S A. 1961 Apr 15;47:497–504. doi: 10.1073/pnas.47.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NIRENBERG M. W., MATTHAEI J. H. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1588–1602. doi: 10.1073/pnas.47.10.1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NOMURA M., OKAMOTO K., ASANO K. RNA metabolism in Escherichia coli infected with bacteriophage T4. Inhibition of host ribosomal and soluble RNA synthesis by phage and effect of chloromycetin. J Mol Biol. 1962 May;4:376–387. doi: 10.1016/s0022-2836(62)80018-7. [DOI] [PubMed] [Google Scholar]
- O'Brien T. F., Michaelides M. C., Coons A. H. STUDIES ON ANTIBODY PRODUCTION : VI. THE COURSE, SENSITIVITY, AND HISTOLOGY OF THE SECONDARY RESPONSE IN VITRO. J Exp Med. 1963 Jun 1;117(6):1053–1062. doi: 10.1084/jem.117.6.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RABINOVITZ M., FISHER J. M. A dissociative effect of puromycin on the pathway of protein synthesis by Ehrlich ascites tumor cells. J Biol Chem. 1962 Feb;237:477–481. [PubMed] [Google Scholar]
- REICH E., FRANKLIN R. M., SHATKIN A. J., TATUM E. L. Effect of actinomycin D on cellular nucleic acid synthesis and virus production. Science. 1961 Aug 25;134(3478):556–557. doi: 10.1126/science.134.3478.556. [DOI] [PubMed] [Google Scholar]
- RENDI R. The effect of chloramphenicol on the incorporation of labeled amino acids into proteins by isolated subcellular fractions from rat liver. Exp Cell Res. 1959 Aug;18:187–189. doi: 10.1016/0014-4827(59)90307-6. [DOI] [PubMed] [Google Scholar]
- SCHWEET R., BISHOP J., MORRIS A. Protein synthesis with particular reference to hemoglobin synthesis--a review. Lab Invest. 1961 Nov-Dec;10:992–1011. [PubMed] [Google Scholar]
- STAVITSKY A. B. Micromethods for the study of proteins and antibodies. I. Procedure and general applications of hemagglutination and hemagglutination-inhibition reactions with tannic acid and protein-treated red blood cells. J Immunol. 1954 May;72(5):360–367. [PubMed] [Google Scholar]
- Schweet R., Lamfrom H., Allen E. THE SYNTHESIS OF HEMOGLOBIN IN A CELL-FREE SYSTEM. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1029–1035. doi: 10.1073/pnas.44.10.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TISSIERES A., WATSON J. D. Breakdown of messenger RNA during in vitro amino acid incorporation into proteins. Proc Natl Acad Sci U S A. 1962 Jun 15;48:1061–1069. doi: 10.1073/pnas.48.6.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WISSEMAN C. L., Jr, SMADEL J. E., HAHN F. E., HOPPS H. E. Mode of action of chloramphenicol. I. Action of chloramphenicol on assimilation of ammonia and on synthesis of proteins and nucleic acids in Escherichia coli. J Bacteriol. 1954 Jun;67(6):662–673. doi: 10.1128/jb.67.6.662-673.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]