Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1964 Jan 1;119(1):139–149. doi: 10.1084/jem.119.1.139

INFECTION OF MYCOBACTERIUM SMEGMATIS WITH D29 PHAGE DNA

Tohru Tokunaga 1, Margret I Sellers 1
PMCID: PMC2137803  PMID: 14113109

Abstract

DNA extracted from D29 mycobacteriophage produced plaques when plated on Mycobacterium smegmatis 607. The host bacterium did not require alternation such as conversion to protoplasts; cells susceptible to infection with intact phage were susceptible to DNA. The bases found in calf thymus DNA constituted the bases of D29 DNA, adenine being paired with thymine and guanine with cytosine. The dissymmetry ratio (A + T/G + C) was 0.56, and the buoyant density in CsCl was 1.722 with a GC content of 63.77 per cent. The efficiency of plating of the DNA is very much lower than that of intact D29, and it penetrates the host at a slower rate. As does intact phage, D29 DNA requires calcium ions for productive infection of 607. D29 DNA is significantly inactivated by incubation with RNAase, but the inactivation probably results from a complexing with the DNA rather than from enzyme hydrolysis.

Full Text

The Full Text of this article is available as a PDF (524.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avery O. T., Macleod C. M., McCarty M. STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES : INDUCTION OF TRANSFORMATION BY A DESOXYRIBONUCLEIC ACID FRACTION ISOLATED FROM PNEUMOCOCCUS TYPE III. J Exp Med. 1944 Feb 1;79(2):137–158. doi: 10.1084/jem.79.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. FINK R. M., FINK K. Biosynthesis of radioactive RNA and DNA pyrimidines from thymidine-2-C-14. Biochem Biophys Res Commun. 1961 Oct 23;6:7–10. doi: 10.1016/0006-291x(61)90174-7. [DOI] [PubMed] [Google Scholar]
  3. FROMAN S., WILL D. W., BOGEN E. Bacteriophage active against virulent Mycobacterium tuberculosis. I. Isolation and activity. Am J Public Health Nations Health. 1954 Oct;44(10):1326–1333. doi: 10.2105/ajph.44.10.1326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fraser D., Mahler H. R., Shug A. L., Thomas C. A. THE INFECTION OF SUB-CELLULAR ESCHERICHIA COLI, STRAIN B, WITH A DNA PREPARATION FROM T2 BACTERIOPHAGE. Proc Natl Acad Sci U S A. 1957 Nov 15;43(11):939–947. doi: 10.1073/pnas.43.11.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GIERER A., SCHRAMM G. Infectivity of ribonucleic acid from tobacco mosaic virus. Nature. 1956 Apr 14;177(4511):702–703. doi: 10.1038/177702a0. [DOI] [PubMed] [Google Scholar]
  6. HERSHEY A. D., CHASE M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol. 1952 May;36(1):39–56. doi: 10.1085/jgp.36.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. KAISER A. D., HOGNESS D. S. The transformation of Escherichia coli with deoxyribonucleic acid isolated from bacteriophage lambda-dg. J Mol Biol. 1960 Dec;2:392–415. doi: 10.1016/s0022-2836(60)80050-2. [DOI] [PubMed] [Google Scholar]
  8. KECK K. An ultramicro technique for the determination of deoxypentose nucleic acid. Arch Biochem Biophys. 1956 Aug;63(2):446–451. doi: 10.1016/0003-9861(56)90059-5. [DOI] [PubMed] [Google Scholar]
  9. KIT S. Fractionation of deoxyribonucleic acid preparations on substituted cellulose anion exchangers. Arch Biochem Biophys. 1960 Apr;87:318–329. doi: 10.1016/0003-9861(60)90179-x. [DOI] [PubMed] [Google Scholar]
  10. Meselson M., Stahl F. W., Vinograd J. EQUILIBRIUM SEDIMENTATION OF MACROMOLECULES IN DENSITY GRADIENTS. Proc Natl Acad Sci U S A. 1957 Jul 15;43(7):581–588. doi: 10.1073/pnas.43.7.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. ROMIG W. R. Infection of Bacillus subtilis with phenol-extracted bacteriophages. Virology. 1962 Apr;16:452–459. doi: 10.1016/0042-6822(62)90226-x. [DOI] [PubMed] [Google Scholar]
  12. SELLERS M. I., BAXTER W. L., RUNNALS H. R. Growth characteristics of mycobacteriophages D28 and D29. Can J Microbiol. 1962 Jun;8:389–399. doi: 10.1139/m62-051. [DOI] [PubMed] [Google Scholar]
  13. SELLES M. I., RUNNALS H. R. Mycobacteriophage. I. Physicochemical characterization. J Bacteriol. 1961 Mar;81:442–447. doi: 10.1128/jb.81.3.442-447.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. SPIZIZEN J. Genetic activity of deoxyribonucleic acid in the reconstitution of biosynthetic pathways. Fed Proc. 1959 Dec;18:957–965. [PubMed] [Google Scholar]
  15. SUEOKA N., MARMUR J., DOTY P., 2nd Dependence of the density of deoxyribonucleic acids on guanine-cytosine content. Nature. 1959 May 23;183(4673):1429–1431. doi: 10.1038/1831429a0. [DOI] [PubMed] [Google Scholar]
  16. Spizizen J. INFECTION OF PROTOPLASTS BY DISRUPTED T2 VIRUS. Proc Natl Acad Sci U S A. 1957 Aug 15;43(8):694–701. doi: 10.1073/pnas.43.8.694. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES