Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1965 Jan 31;121(2):215–234. doi: 10.1084/jem.121.2.215

BOUND COMPLEMENT AND IMMUNOLOGIC INJURY OF BLOOD VESSELS

Peter A Ward 1, Charles G Cochrane 1
PMCID: PMC2137976  PMID: 14264268

Abstract

Rats and guinea pigs were depleted of complement (C') by treatment with heat aggregated human γ-globulin (agg HGG), zymosan, anti-β1C globulin, and carrageenan. Although antigen and antibody were bound to vascular structures, Arthus reactions were inhibited. This inhibition was characterized by the lack of C' binding to walls of vessels, the lack of polymorphonuclear (PMN's) cellular infiltrates, and the lack of significant vascular damage. When the same animals were followed for several hours thereafter, levels of serum C' began to rise, C' was bound in tissues, PMN infiltrates appeared, and immunologic vasculitis developed. Blood counts, chemotaxis of PMN's induced by lysates of PMN granules, together with studies on motility and phagocytosis by PMN's obtained from C' depleted rats, failed to establish any abnormality in these cells which would account for inhibition of Arthus reactions. The specificity of C' depletion in terms of effects in the first four reacting components of guinea pig C' was studied. Treatment with agg HGG led to loss of activity in all components, whereas zymosan and anti-β1C globulin predominately affected the third component (C'3c). Carrageenan mainly affected the first two reacting components of C'. Thus, the availability of the 3c component, or a subsequently reacting component, correlated with the attraction of PMN's to immune reactants in vivo. Various antibodies with different C' fixing capacities in vitro were tested for their ability to induce immunologic vasculitis in normal animals. In rats, only those antibodies which fixed C' in vitro possessed biological activity, whereas in guinea pigs, all antibodies tested, regardless of C' fixation in vitro, induced Arthus reactions. For a given antibody in rats the vasculitis-inducing property was reflected in its ability to bind C' in vascular structures. Rats depleted of circulating PMN's by specific antibody were tested for Arthus activity. Although concentrations of immune reactants and C' were readily detected in vascular structures, no PMN infiltration occurred and significant vascular damage was averted.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AUSTEN K. F., BEER F. THE MEASUREMENT OF SECOND COMPONENT OF HUMAN COMPLEMENT (C'2HU) BY ITS INTERACTION WITH EAC'1AGP,4GP CELLS. J Immunol. 1964 Jun;92:946–957. [PubMed] [Google Scholar]
  2. BARBARO J. F. DEMONSTRATION OF A HAEMOLYTICALLY ACTIVE 11 S COMPONENT OF RABBIT, GUINEA PIG AND HUMAN SERUM BY MEANS OF ANTIGEN-ANTIBODY PRECIPITATES. Nature. 1963 Aug 24;199:819–820. doi: 10.1038/199819a0. [DOI] [PubMed] [Google Scholar]
  3. BIER O. G., SIQUEIRA M. Prevention by intravenous injection of antigen and antibody of passive Arthus reaction to unrelated immune system. Proc Soc Exp Biol Med. 1959 Jul;101(3):502–505. doi: 10.3181/00379727-101-24996. [DOI] [PubMed] [Google Scholar]
  4. BLOCH K. J., KOURILSKY F. M., OVARY Z., BENACERRAF B. Properties of guinea pig 7S antibodies. III. Identification of antibodies involved in complement fixation and hemolysis. J Exp Med. 1963 Jun 1;117:965–981. doi: 10.1084/jem.117.6.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CHRISTIAN C. L. Characterization of the reactant (gamma globulin factor) in the F II precipitin reaction and the F II tanned sheep cell agglutination test. J Exp Med. 1958 Jul 1;108(1):139–157. doi: 10.1084/jem.108.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. COCHRANE C. G. STUDIES ON THE LOCALIZATION OF CIRCULATING ANTIGEN-ANTIBODY COMPLEXES AND OTHER MACROMOLECULES IN VESSELS. I. STRUCTURAL STUDIES. J Exp Med. 1963 Oct 1;118:489–502. doi: 10.1084/jem.118.4.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. COCHRANE C. G., WEIGLE W. O., DIXON F. J. The role of polymorphonuclear leukocytes in the initiation and cessation of the Arthus vasculitis. J Exp Med. 1959 Sep 1;110:481–494. doi: 10.1084/jem.110.3.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. COHN Z. A., HIRSCH J. G. The isolation and properties of the specific cytoplasmic granules of rabbit polymorphonuclear leucocytes. J Exp Med. 1960 Dec 1;112:983–1004. doi: 10.1084/jem.112.6.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. COONS A. H., KAPLAN M. H. Localization of antigen in tissue cells; improvements in a method for the detection of antigen by means of fluorescent antibody. J Exp Med. 1950 Jan 1;91(1):1–13. doi: 10.1084/jem.91.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HUMPHREY J. H. The mechanism of Arthus reactions. II. The role of polymorphonuclear leucocytes and platelets in reversed passive reactions in the guinea-pig. Br J Exp Pathol. 1955 Jun;36(3):283–289. [PMC free article] [PubMed] [Google Scholar]
  11. LEVENSON H., COCHRANE C. G. NONPRECIPITATING ANTIBODY AND THE ARTHUS VASCULITIS. J Immunol. 1964 Jan;92:118–127. [PubMed] [Google Scholar]
  12. MULLER-EBERHARD H. J. A new supporting medium for preparative electrophoresis. Scand J Clin Lab Invest. 1960;12:33–37. [PubMed] [Google Scholar]
  13. NISHIOKA K., LINSCOTT W. D. COMPONENTS OF GUINEA PIG COMPLEMENT. I. SEPARATION OF A SERUM FRACTION ESSENTIAL FOR IMMUNE HEMOLYSIS AND IMMUNE ADHERENCE. J Exp Med. 1963 Nov 1;118:767–793. doi: 10.1084/jem.118.5.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. NISONOFF A., WISSLER F. C., LIPMAN L. N., WOERNLEY D. L. Separation of univalent fragments from the bivalent rabbit antibody molecule by reduction of disulfide bonds. Arch Biochem Biophys. 1960 Aug;89:230–244. doi: 10.1016/0003-9861(60)90049-7. [DOI] [PubMed] [Google Scholar]
  15. OSLER A. G., STRAUSS J. H., MAYER M. M. Diagnostic complement fixation. I. A method. Am J Syph Gonorrhea Vener Dis. 1952 Mar;36(2):140–153. [PubMed] [Google Scholar]
  16. Rapp H. J., Borsos T. Complement and Hemolysis. Science. 1963 Aug 23;141(3582):738–740. doi: 10.1126/science.141.3582.738. [DOI] [PubMed] [Google Scholar]
  17. STETSON C. A., Jr Similarities in the mechanisms determining the Arthus and Shwartzman phenomena. J Exp Med. 1951 Oct;94(4):347–358. doi: 10.1084/jem.94.4.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. THOMAS L. POSSIBLE ROLE OF LEUCOCYTE GRANULES IN THE SHWARTZMAN AND ARTHUS REACTIONS. Proc Soc Exp Biol Med. 1964 Jan;115:235–240. doi: 10.3181/00379727-115-28879. [DOI] [PubMed] [Google Scholar]
  19. WHITE R. G., JENKINS G. C., WILKINSON P. C. The production of skin-sensitizing antibody in the guinea-pig. Int Arch Allergy Appl Immunol. 1963;22:156–165. doi: 10.1159/000229362. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES