Abstract
Strains of microorganisms capable of 7α-dehydroxylation of chenodeoxycholate were isolated from rat and human feces. All the strains were strictly anaerobic, non-motile, moderately themioresistant Gram-positive rods. They showed some saccharolytic properties with the production of both acid and gas. They were H2S-positive but indole-, skatole-, citrate-, catalase-, and oxidase-negative. The isolated strains capable of 7α-dehydroxylation of chenodeoxycholate were also able to oxidize the hydroxyl groups at C-3 and C-7 to keto groups. The following metabolites were isolated: 3-keto-7α-hydroxy-5β-cholanoic acid, 3α-hydroxy-7-keto-5β-cholanoic acid, 3α-hydroxy-5β-cholanoic acid, and 3-keto-5β-cholanoic acid. The isolated strains did not have the enzymes necessary for hydrolyzing conjugated bile acids. In mixed anaerobic cultures of fecal microorganisms, extensive reduction of the 3-keto group to the 3β-hydroxyl group occurred. The microorganism(s) responsible for this reaction have as yet not been isolated.
Full Text
The Full Text of this article is available as a PDF (1,013.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRZIN B. GLOBULAR BODIES OF LACTOBACILLI. Pathol Microbiol (Basel) 1965;28:251–258. doi: 10.1159/000161777. [DOI] [PubMed] [Google Scholar]
- DANIELSSON H., ENEROTH P., HELLSTROM K., LINDSTEDT S., SJOVALL J. On the turnover and excretory products of cholic and chenodeoxycholic acid in man. J Biol Chem. 1963 Jul;238:2299–2304. [PubMed] [Google Scholar]
- DANIELSSON H., ENEROTH P., HELLSTROM K., SJOVALL J. Synthesis of some 3beta-hydroxylated bile acids and the isolation of 3beta, 12alpha-dihydroxy-5beta-cholanic acid from feces. J Biol Chem. 1962 Dec;237:3657–3659. [PubMed] [Google Scholar]
- GAENSHIRT H., KOSS F. W., MORIANZ K. [Studies on the quantitative evaluation of thin-layer chromatography. 2. Separation and determination of bile acids]. Arzneimittelforschung. 1960 Nov;10:943–947. [PubMed] [Google Scholar]
- GUSTAFSSON B. E., BERGSTROM S., LINDSTEDT S., NORMAN A. Turnover and nature of fecal bile acids in germfree and infected rats fed cholic acid-24-14C; bile acids and steroids 41. Proc Soc Exp Biol Med. 1957 Mar;94(3):467–471. doi: 10.3181/00379727-94-22981. [DOI] [PubMed] [Google Scholar]
- GUSTAFSSON B. E. Lightweight stainless steel systems for rearing germfree animals. Ann N Y Acad Sci. 1959 May 8;78:17–28. doi: 10.1111/j.1749-6632.1959.tb53092.x. [DOI] [PubMed] [Google Scholar]
- GUSTAFSSON B. E., NORMAN A., SJOVALL J. Influence of E. coli infection on turnover and metabolism of cholic acid in germ-free rats. Arch Biochem Biophys. 1960 Nov;91:93–100. doi: 10.1016/0003-9861(60)90460-4. [DOI] [PubMed] [Google Scholar]
- HALPERIN A. H., QUASTEL J. H., SCHOLEFIELD P. G. Bacterial oxidation of cholic acid. Arch Biochem Biophys. 1954 Sep;52(1):5–17. doi: 10.1016/0003-9861(54)90083-1. [DOI] [PubMed] [Google Scholar]
- HAMILTON J. G. The effect of oral neomycin on the conversion of cholic acid to deoxycholic in man. Arch Biochem Biophys. 1963 Apr;101:7–13. doi: 10.1016/0003-9861(63)90527-7. [DOI] [PubMed] [Google Scholar]
- HAYAISHI O., SATO Y., JAKOBY W. B., STOHLMAN E. F. Reversible enzymatic oxidation of bile acids. Arch Biochem Biophys. 1955 Jun;56(2):554–555. doi: 10.1016/0003-9861(55)90278-2. [DOI] [PubMed] [Google Scholar]
- HAYAKAWA S., FUJII T., SABURI Y., EGUCHI T. Microbiological degradation of cholic acid. Nature. 1957 Mar 9;179(4558):537–538. doi: 10.1038/179537a0. [DOI] [PubMed] [Google Scholar]
- HAYAKAWA S., SAMUELSSON B. TRANSFORMATION OF CHOLIC ACID IN VITRO BY CORYNEBACTERIUM SIMPLEX. BILE ACIDS AND STEROIDS. 132. J Biol Chem. 1964 Jan;239:94–97. [PubMed] [Google Scholar]
- HEFTMANN E., WEISS E., MILLER H. K., MOSETTIG E. Isolation of some bile acids and sterols from the feces of healthy men. Arch Biochem Biophys. 1959 Oct;84:324–341. doi: 10.1016/0003-9861(59)90597-1. [DOI] [PubMed] [Google Scholar]
- NORMAN A., GRUBB R. Hydrolysis of conjugated bile acids by Clostridia and enterococci; bile acids and steroids 25. Acta Pathol Microbiol Scand. 1955;36(6):537–547. doi: 10.1111/j.1699-0463.1955.tb04651.x. [DOI] [PubMed] [Google Scholar]
- NORMAN A., PALMER R. H. METABOLITES OF LITHOCHOLIC ACID-24-C-14 IN HUMAN BILE AND FECES. J Lab Clin Med. 1964 Jun;63:986–1001. [PubMed] [Google Scholar]
- NORMAN A., SHORB M. S. In vitro formation of deoxycholic and lithocholic acid by human intestinal microorganisms. Proc Soc Exp Biol Med. 1962 Jul;110:552–555. doi: 10.3181/00379727-110-27577. [DOI] [PubMed] [Google Scholar]
- NORMAN A., SJOVALL J. On the transformation and enterohepatic circulation of cholic acid in the rat: bile acids and steroids 68. J Biol Chem. 1958 Oct;233(4):872–885. [PubMed] [Google Scholar]
- PORTMAN O. W., SHAH S., ANTONIS A., JORGENSEN B. Alteration of bile salts by bacteria. Proc Soc Exp Biol Med. 1962 Apr;109:959–965. doi: 10.3181/00379727-109-27391. [DOI] [PubMed] [Google Scholar]
- RADERECHT H. J., BINNEWIES S. [Quantitative autoradiography of labelled compounds in paper chromatograms]. Clin Chim Acta. 1962 Nov;7:873–875. doi: 10.1016/0009-8981(62)90073-6. [DOI] [PubMed] [Google Scholar]
- Turfitt G. E. The microbiological degradation of steroids: 4. Fission of the steroid molecule. Biochem J. 1948;42(3):376–383. [PMC free article] [PubMed] [Google Scholar]