Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1966 Jan 31;123(2):413–432. doi: 10.1084/jem.123.2.413

ISOLATED FECAL MICROORGANISMS CAPABLE OF 7 α-DEHYDROXYLATING BILE ACIDS

Bengt E Gustafsson 1, Tore Midtvedt 1, Arne Norman 1
PMCID: PMC2138138  PMID: 5325994

Abstract

Strains of microorganisms capable of 7α-dehydroxylation of chenodeoxycholate were isolated from rat and human feces. All the strains were strictly anaerobic, non-motile, moderately themioresistant Gram-positive rods. They showed some saccharolytic properties with the production of both acid and gas. They were H2S-positive but indole-, skatole-, citrate-, catalase-, and oxidase-negative. The isolated strains capable of 7α-dehydroxylation of chenodeoxycholate were also able to oxidize the hydroxyl groups at C-3 and C-7 to keto groups. The following metabolites were isolated: 3-keto-7α-hydroxy-5β-cholanoic acid, 3α-hydroxy-7-keto-5β-cholanoic acid, 3α-hydroxy-5β-cholanoic acid, and 3-keto-5β-cholanoic acid. The isolated strains did not have the enzymes necessary for hydrolyzing conjugated bile acids. In mixed anaerobic cultures of fecal microorganisms, extensive reduction of the 3-keto group to the 3β-hydroxyl group occurred. The microorganism(s) responsible for this reaction have as yet not been isolated.

Full Text

The Full Text of this article is available as a PDF (1,013.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRZIN B. GLOBULAR BODIES OF LACTOBACILLI. Pathol Microbiol (Basel) 1965;28:251–258. doi: 10.1159/000161777. [DOI] [PubMed] [Google Scholar]
  2. DANIELSSON H., ENEROTH P., HELLSTROM K., LINDSTEDT S., SJOVALL J. On the turnover and excretory products of cholic and chenodeoxycholic acid in man. J Biol Chem. 1963 Jul;238:2299–2304. [PubMed] [Google Scholar]
  3. DANIELSSON H., ENEROTH P., HELLSTROM K., SJOVALL J. Synthesis of some 3beta-hydroxylated bile acids and the isolation of 3beta, 12alpha-dihydroxy-5beta-cholanic acid from feces. J Biol Chem. 1962 Dec;237:3657–3659. [PubMed] [Google Scholar]
  4. GAENSHIRT H., KOSS F. W., MORIANZ K. [Studies on the quantitative evaluation of thin-layer chromatography. 2. Separation and determination of bile acids]. Arzneimittelforschung. 1960 Nov;10:943–947. [PubMed] [Google Scholar]
  5. GUSTAFSSON B. E., BERGSTROM S., LINDSTEDT S., NORMAN A. Turnover and nature of fecal bile acids in germfree and infected rats fed cholic acid-24-14C; bile acids and steroids 41. Proc Soc Exp Biol Med. 1957 Mar;94(3):467–471. doi: 10.3181/00379727-94-22981. [DOI] [PubMed] [Google Scholar]
  6. GUSTAFSSON B. E. Lightweight stainless steel systems for rearing germfree animals. Ann N Y Acad Sci. 1959 May 8;78:17–28. doi: 10.1111/j.1749-6632.1959.tb53092.x. [DOI] [PubMed] [Google Scholar]
  7. GUSTAFSSON B. E., NORMAN A., SJOVALL J. Influence of E. coli infection on turnover and metabolism of cholic acid in germ-free rats. Arch Biochem Biophys. 1960 Nov;91:93–100. doi: 10.1016/0003-9861(60)90460-4. [DOI] [PubMed] [Google Scholar]
  8. HALPERIN A. H., QUASTEL J. H., SCHOLEFIELD P. G. Bacterial oxidation of cholic acid. Arch Biochem Biophys. 1954 Sep;52(1):5–17. doi: 10.1016/0003-9861(54)90083-1. [DOI] [PubMed] [Google Scholar]
  9. HAMILTON J. G. The effect of oral neomycin on the conversion of cholic acid to deoxycholic in man. Arch Biochem Biophys. 1963 Apr;101:7–13. doi: 10.1016/0003-9861(63)90527-7. [DOI] [PubMed] [Google Scholar]
  10. HAYAISHI O., SATO Y., JAKOBY W. B., STOHLMAN E. F. Reversible enzymatic oxidation of bile acids. Arch Biochem Biophys. 1955 Jun;56(2):554–555. doi: 10.1016/0003-9861(55)90278-2. [DOI] [PubMed] [Google Scholar]
  11. HAYAKAWA S., FUJII T., SABURI Y., EGUCHI T. Microbiological degradation of cholic acid. Nature. 1957 Mar 9;179(4558):537–538. doi: 10.1038/179537a0. [DOI] [PubMed] [Google Scholar]
  12. HAYAKAWA S., SAMUELSSON B. TRANSFORMATION OF CHOLIC ACID IN VITRO BY CORYNEBACTERIUM SIMPLEX. BILE ACIDS AND STEROIDS. 132. J Biol Chem. 1964 Jan;239:94–97. [PubMed] [Google Scholar]
  13. HEFTMANN E., WEISS E., MILLER H. K., MOSETTIG E. Isolation of some bile acids and sterols from the feces of healthy men. Arch Biochem Biophys. 1959 Oct;84:324–341. doi: 10.1016/0003-9861(59)90597-1. [DOI] [PubMed] [Google Scholar]
  14. NORMAN A., GRUBB R. Hydrolysis of conjugated bile acids by Clostridia and enterococci; bile acids and steroids 25. Acta Pathol Microbiol Scand. 1955;36(6):537–547. doi: 10.1111/j.1699-0463.1955.tb04651.x. [DOI] [PubMed] [Google Scholar]
  15. NORMAN A., PALMER R. H. METABOLITES OF LITHOCHOLIC ACID-24-C-14 IN HUMAN BILE AND FECES. J Lab Clin Med. 1964 Jun;63:986–1001. [PubMed] [Google Scholar]
  16. NORMAN A., SHORB M. S. In vitro formation of deoxycholic and lithocholic acid by human intestinal microorganisms. Proc Soc Exp Biol Med. 1962 Jul;110:552–555. doi: 10.3181/00379727-110-27577. [DOI] [PubMed] [Google Scholar]
  17. NORMAN A., SJOVALL J. On the transformation and enterohepatic circulation of cholic acid in the rat: bile acids and steroids 68. J Biol Chem. 1958 Oct;233(4):872–885. [PubMed] [Google Scholar]
  18. PORTMAN O. W., SHAH S., ANTONIS A., JORGENSEN B. Alteration of bile salts by bacteria. Proc Soc Exp Biol Med. 1962 Apr;109:959–965. doi: 10.3181/00379727-109-27391. [DOI] [PubMed] [Google Scholar]
  19. RADERECHT H. J., BINNEWIES S. [Quantitative autoradiography of labelled compounds in paper chromatograms]. Clin Chim Acta. 1962 Nov;7:873–875. doi: 10.1016/0009-8981(62)90073-6. [DOI] [PubMed] [Google Scholar]
  20. Turfitt G. E. The microbiological degradation of steroids: 4. Fission of the steroid molecule. Biochem J. 1948;42(3):376–383. [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES