Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1967 Jan 31;125(2):249–275. doi: 10.1084/jem.125.2.249

EQUINE ANTIHAPTEN ANTIBODY

THE SUBUNITS AND FRAGMENTS OF ANTI-β-LACTOSIDE ANTIBODY

John H Rockey 1
PMCID: PMC2138359  PMID: 4959973

Abstract

Eight antigenically unique immunoglobulins have been identified in purified equine anti-p-azophenyl-β-lactoside (Lac) antibody isolated from a single horse. The Fc fragments of the γGa-, γGb-, γGc-, and -γA-globulins have been shown to possess unique antigenic determinants. Common γG- and γA-Fc fragment antigenic determinants, which were absent from the 10Sγ1- and γM-globulins, have also been observed. All antibody populations share two antigenically distinct light (B, L) chain variants. The association of anti-Lac antibody with the hapten p-(p-dimethylamino-benzeneazo)-phenyl-β-lactoside has been measured by equilibrium dialysis and by fluorescence quenching. A variation in the affinity of anti-Lac antibody for hapten has been observed. The affinity of antibody was unaltered by enzymatic removal of the Fc fragments by peptic digestion or dissociation of the two combining sites on the papain 3.5S Fab fragments, indicating that the observed heterogeneity of affinities was not a direct function of the heterogeneity in structure of the Fc fragments. Isolated heavy (A, H) chains of γA-anti-Lac antibody have been shown to have retamed affinity for Lac dye by equilibrium dialysis and by analytical ultracentrifugation, employing a combination of schlieren and absorption optics. The heavy (A, H) chains from two physically separable, antigenically distinct antibody populations, isolated from the same animal and having affinity for the same haptenic determinant, have been found to differ in their amino acid composition. Anti-Lac antibody light (B, L) chains have also been shown to be chemically heterogeneous, and contained populations of polypeptide chains possessing, and populations lacking methionine. The relevance of the observed structural heterogeneity of equine anti-Lac antibody to the problem of defining the mechanism of acquisition of immunological specificity is briefly discussed.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERNIER G. M., PUTNAM F. W. POLYMERISM, POLYMORPHISM, AND IMPURITIES IN BENCE-JONES PROTEINS. Biochim Biophys Acta. 1964 May 11;86:295–308. doi: 10.1016/0304-4165(64)90056-x. [DOI] [PubMed] [Google Scholar]
  2. BUCKLEY C. E., 3rd, WHITNEY P. L., TANFORD C. THE UNFOLDING AND RENATURATION OF A SPECIFIC UNIVALENT ANTIBODY FRAGMENT. Proc Natl Acad Sci U S A. 1963 Nov;50:827–834. doi: 10.1073/pnas.50.5.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. EDELMAN G. M., GALLY J. A. A MODEL FOR THE 7S ANTIBODY MOLECULE. Proc Natl Acad Sci U S A. 1964 May;51:846–853. doi: 10.1073/pnas.51.5.846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. EDELMAN G. M., OLINS D. E., GALLY J. A., ZINDER N. D. RECONSTITUTION OF IMMUNOLOGIC ACTIVITY BY INTERACTION OF POLYPEPTIDE CHAINS OF ANTIBODIES. Proc Natl Acad Sci U S A. 1963 Oct;50:753–761. doi: 10.1073/pnas.50.4.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. EISEN H. N., SISKIND G. W. VARIATIONS IN AFFINITIES OF ANTIBODIES DURING THE IMMUNE RESPONSE. Biochemistry. 1964 Jul;3:996–1008. doi: 10.1021/bi00895a027. [DOI] [PubMed] [Google Scholar]
  6. FLEISCHMAN J. B., PAIN R. H., PORTER R. R. Reduction of gamma-globulins. Arch Biochem Biophys. 1962 Sep;Suppl 1:174–180. [PubMed] [Google Scholar]
  7. FRANEK F., NEZLIN R. S. Recovery of antibody combining activity by interaction of different peptide chains isolated from purified horse antitoxins. Folia Microbiol (Praha) 1963 Mar;8:128–130. doi: 10.1007/BF02877236. [DOI] [PubMed] [Google Scholar]
  8. Fahey J. L., Solomon A. TWO TYPES OF gamma-MYELOMA PROTEINS, beta(2A)-MYELOMA PROTEINS, gamma(1)-MACROGLOBULINS, AND BENCE JONES PROTEINS IDENTIFIED BY TWO GROUPS OF COMMON ANTIGENIC DETERMINANTS. J Clin Invest. 1963 Jun;42(6):811–822. doi: 10.1172/JCI104773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fujio H., Karush F. Antibody affinity. II. Effect of immunization interval on antihapten antibody in the rabbit. Biochemistry. 1966 Jun;5(6):1856–1863. doi: 10.1021/bi00870a011. [DOI] [PubMed] [Google Scholar]
  10. Goodwin T. W., Morton R. A. The spectrophotometric determination of tyrosine and tryptophan in proteins. Biochem J. 1946;40(5-6):628–632. doi: 10.1042/bj0400628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HABER E. RECOVERY OF ANTIGENIC SPECIFICITY AFTER DENATURATION AND COMPLETE REDUCTION OF DISULFIDES IN A PAPAIN FRAGMENT OF ANTIBODY. Proc Natl Acad Sci U S A. 1964 Oct;52:1099–1106. doi: 10.1073/pnas.52.4.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Heidelberger M., Pedersen K. O. THE MOLECULAR WEIGHT OF ANTIBODIES. J Exp Med. 1937 Feb 28;65(3):393–414. doi: 10.1084/jem.65.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hilschmann N., Craig L. C. Amino acid sequence studies with Bence-Jones proteins. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1403–1409. doi: 10.1073/pnas.53.6.1403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hood L. E., Gray W. R., Dreyer W. J. On the mechanism of antibody synthesis: a species comparison of L-chains. Proc Natl Acad Sci U S A. 1966 Apr;55(4):826–832. doi: 10.1073/pnas.55.4.826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KLIMAN N. R., ROCKEY J. H., KARUSH F. VALENCE AND AFFINITY OF EQUINE NONPRECIPITATING ANTIBODY TO A HAPTENIC GROUP. Science. 1964 Oct 16;146(3642):401–403. doi: 10.1126/science.146.3642.401. [DOI] [PubMed] [Google Scholar]
  16. Kabat E. A. THE MOLECULAR WEIGHT OF ANTIBODIES. J Exp Med. 1939 Jan 1;69(1):103–118. doi: 10.1084/jem.69.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Klinman N. R., Rockey J. H., Frauenberger G., Karush F. Equine anti-hapten antibody. 3. The comparative properties of gamma G- and gammaA-antibodies. J Immunol. 1966 Apr;96(4):587–595. [PubMed] [Google Scholar]
  18. Koshland M. E., Englberger F. M., Shapanka R. Location of amino acid differences in the subunits of three rabbit antibodies. Biochemistry. 1966 Feb;5(2):641–651. doi: 10.1021/bi00866a034. [DOI] [PubMed] [Google Scholar]
  19. LEACH A. A., O'SHEA P. C. THE DETERMINATION OF PROTEIN MOLECULAR WEIGHTS OF UP TO 225,000 BY GEL-FILTRATION ON A SINGLE COLUMN OF SEPHADEX G-200 AT 25 DEGREES AND 40 DEGREES. J Chromatogr. 1965 Feb;17:245–251. doi: 10.1016/s0021-9673(00)99864-9. [DOI] [PubMed] [Google Scholar]
  20. METZGER H., WOFSY L., SINGER S. J. THE PARTICIPATION OF A AND B POLYPEPTIDE CHAINS IN THE ACTIVE SITES OF ANTIBODY MOLECULES. Proc Natl Acad Sci U S A. 1964 Apr;51:612–618. doi: 10.1073/pnas.51.4.612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mannik M., Kunkel H. G. CLASSIFICATION OF MYELOMA PROTEINS, BENCE JONES PROTEINS, AND MACROGLOBULINS INTO TWO GROUPS ON THE BASIS OF COMMON ANTIGENIC CHARACTERS. J Exp Med. 1962 Nov 30;116(6):859–877. doi: 10.1084/jem.116.6.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Müller-Eberhard H. J., Nilsson U. RELATION OF A beta(1)-GLYCOPROTEIN OF HUMAN SERUM TO THE COMPLEMENT SYSTEM. J Exp Med. 1960 Jan 31;111(2):217–234. doi: 10.1084/jem.111.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. NAKAMURA H., KATSURA T. IMMUNOCHEMICAL STUDIES ON DIPHTHERIA ANTITOXIN. VI. COMPARATIVE STUDIES OF HORSE T AND GAMMA ANTITOXINS IN THE QUANTITATIVE PRECIPITIN REACTION, COMPLEMENT FIXATION, AND INDIRECT HEMAGGLUTINATION OF TANNED AND TOXIN-COATED ERYTHROCYTES. Jpn J Exp Med. 1964 Aug;34:167–196. [PubMed] [Google Scholar]
  24. NISONOFF A., WISSLER F. C., WOERNLEY D. L. Properties of univalent fragments of rabbit antibody isolated by specific adsorption. Arch Biochem Biophys. 1960 Jun;88:241–249. doi: 10.1016/0003-9861(60)90229-0. [DOI] [PubMed] [Google Scholar]
  25. PAIN R. H. THE HOMOGENEITY OF HORSE 7-S GAMMA-GLOBULIN. Biochim Biophys Acta. 1965 Jan 25;94:183–187. doi: 10.1016/0926-6585(65)90022-1. [DOI] [PubMed] [Google Scholar]
  26. PAIN R. H. THE MOLECULAR WEIGHTS OF THE PEPTIDE CHAINS OF GAMMA-GLOBULIN. Biochem J. 1963 Aug;88:234–239. doi: 10.1042/bj0880234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. PIEZ K. A., MORRIS L. A modified procedure for the automatic analysis of amino acids. Anal Biochem. 1960 Nov;1:187–201. doi: 10.1016/0003-2697(60)90045-2. [DOI] [PubMed] [Google Scholar]
  28. PORTER R. R. The hydrolysis of rabbit y-globulin and antibodies with crystalline papain. Biochem J. 1959 Sep;73:119–126. doi: 10.1042/bj0730119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pappenheimer A. M., Lundgren H. P., Williams J. W. STUDIES ON THE MOLECULAR WEIGHT OF DIPHTHERIA TOXIN, ANTITOXIN, AND THEIR REACTION PRODUCTS. J Exp Med. 1940 Jan 31;71(2):247–262. doi: 10.1084/jem.71.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. ROCKEY J. H., KLINMAN N. R., KARUSH F. EQUINE ANTIHAPTEN ANTIBODY. I. 7S BETA-2A- AND 1OS GAMMA-1- GLOBULIN COMPONENTS OF PURIFIED ANTI-BETA-LACTOSIDE ANTIBODY. J Exp Med. 1964 Oct 1;120:589–609. doi: 10.1084/jem.120.4.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. ROCKEY J. H., KUNKEL H. G. Unusual sedimentation and sulfhydryl sensitivity of certain isohemagglutinins and skin-sensitizing antibody. Proc Soc Exp Biol Med. 1962 May;110:101–105. doi: 10.3181/00379727-110-27437. [DOI] [PubMed] [Google Scholar]
  32. Raynaud M., Iscaki S., Mangalo R. Séparation chromatographique des gamma G et gamma A antitoxines antidiphtériques de cheval. Ann Inst Pasteur (Paris) 1965 Oct;109(4):525–551. [PubMed] [Google Scholar]
  33. SCHEIDEGGER J. J. Une micro-méthode de l'immuno-electrophorèse. Int Arch Allergy Appl Immunol. 1955;7(2):103–110. [PubMed] [Google Scholar]
  34. Saha K., Karush F., Marks R. Antibody affinity. I. Studies with a large haptenic group. Immunochemistry. 1966 Jul;3(4):279–298. doi: 10.1016/0019-2791(66)90091-7. [DOI] [PubMed] [Google Scholar]
  35. Schultze H. E., Haupt H., Heide K., Heimburger N., Schwick H. G. Comparative investigations of purified diphtheria and tetanus T-components and their fragments. Immunochemistry. 1965 Sep;2(3):273–284. doi: 10.1016/0019-2791(65)90007-8. [DOI] [PubMed] [Google Scholar]
  36. Siegel L. M., Monty K. J. Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation. Application to crude preparations of sulfite and hydroxylamine reductases. Biochim Biophys Acta. 1966 Feb 7;112(2):346–362. doi: 10.1016/0926-6585(66)90333-5. [DOI] [PubMed] [Google Scholar]
  37. Singer S. J., Doolittle R. F. Antibody active sites and immunoglobulin molecules. Science. 1966 Jul 1;153(3731):13–25. doi: 10.1126/science.153.3731.13. [DOI] [PubMed] [Google Scholar]
  38. Titani K., Whitley E., Jr, Putnam F. W. Immunoglobulin structure: variation in the sequence of Bence Jones proteins. Science. 1966 Jun 10;152(3728):1513–1516. doi: 10.1126/science.152.3728.1513. [DOI] [PubMed] [Google Scholar]
  39. Velick S. F., Parker C. W., Eisen H. N. EXCITATION ENERGY TRANSFER AND THE QUANTITATIVE STUDY OF THE ANTIBODY HAPTEN REACTION. Proc Natl Acad Sci U S A. 1960 Nov;46(11):1470–1482. doi: 10.1073/pnas.46.11.1470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Weir R. C., Porter R. R. Comparison of the structure of the immunoglobulins from horse serum. Biochem J. 1966 Jul;100(1):63–68. doi: 10.1042/bj1000063. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES