Abstract
Myeloperoxidase, iodide, and H2O2 have a bactericidal effect on Escherichia coli. Myeloperoxidase can be replaced in this system by lactoperoxidase or by a guinea pig leukocyte particulate preparation, H2O2 by an H2O2-generating system such as glucose and glucose oxidase, and iodide by thyroxine or triiodothyronine. The bactericidal effect was high at pH 5.0 and fell as the pH was increased. Preincubation of myeloperoxidase, iodide, and H2O2 for 30 min before the addition of the bacteria largely prevented the bactericidal effect. Thus, the organisms must be present in the reaction mixture during iodide oxidation for maximum killing, which suggests the involvement of labile intermediates of iodide oxidation rather than the more stable end products of oxidation such as iodine. Iodination of the bacteria by the myeloperoxidase-iodide-H2O2 system was demonstrated chemically and radioautographically. Iodination and the bactericidal effect were similarly affected by changes in experimental conditions in all the parameters tested (effect of preincubation, pH, and inhibitors). Phagocytosis of bacteria by guinea pig leukocytes was associated with the conversion of iodide to a trichloroacetic acid-precipitable form. Iodide was localized radioautographically in the cytoplasm of human leukocytes which contained ingested bacteria. Iodide fixation was not observed in the absence of phagocytosis or in the presence of Tapazole.
Full Text
The Full Text of this article is available as a PDF (886.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- COHN Z. A., MORSE S. I. Interactions between rabbit polymorphonuclear leucocytes and staphylococci. J Exp Med. 1959 Sep 1;110:419–443. doi: 10.1084/jem.110.3.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DOGON I. L., KERR A. C., AMDUR B. H. Characterization of an antibacterial factor in human parotid secretions, active against Lactobacillus casei. Arch Oral Biol. 1962 Jan-Feb;7:81–90. doi: 10.1016/0003-9969(62)90051-1. [DOI] [PubMed] [Google Scholar]
- HIRSCH J. G., COHN Z. A. Degranulation of polymorphonuclear leucocytes following phagocytosis of microorganisms. J Exp Med. 1960 Dec 1;112:1005–1014. doi: 10.1084/jem.112.6.1005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HIRSCH J. G. Cinemicrophotographic observations on granule lysis in polymorphonuclear leucocytes during phagocytosis. J Exp Med. 1962 Dec 1;116:827–834. doi: 10.1084/jem.116.6.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JAGO G. R., MORRISON M. Anti-streptococcal activity of lactoperoxidase III. Proc Soc Exp Biol Med. 1962 Dec;111:585–588. doi: 10.3181/00379727-111-27862. [DOI] [PubMed] [Google Scholar]
- KAPLOW L. S. SIMPLIFIED MYELOPEROXIDASE STAIN USING BENZIDINE DIHYDROCHLORIDE. Blood. 1965 Aug;26:215–219. [PubMed] [Google Scholar]
- KLEBANOFF S. J. INACTIVATION OF ESTROGEN BY RAT UTERINE PREPARATIONS. Endocrinology. 1965 Feb;76:301–311. doi: 10.1210/endo-76-2-301. [DOI] [PubMed] [Google Scholar]
- KLEBANOFF S. J., LUEBKE R. G. THE ANTILACTOBACILLUS SYSTEM OF SALIVA. ROLE OF SALIVARY PEROXIDASE. Proc Soc Exp Biol Med. 1965 Feb;118:483–486. doi: 10.3181/00379727-118-29882. [DOI] [PubMed] [Google Scholar]
- KLEBANOFF S. J., YIP C., KESSLER D. The iodination of tyrosine by beef thyroid preparations. Biochim Biophys Acta. 1962 Apr 23;58:563–574. doi: 10.1016/0006-3002(62)90067-7. [DOI] [PubMed] [Google Scholar]
- KURLAND G. S., KROTKOV M. V., FREEDBERG A. S. Oxygen consumption and-thyroxine deiodination by human leukocytes. J Clin Endocrinol Metab. 1960 Jan;20:35–46. doi: 10.1210/jcem-20-1-35. [DOI] [PubMed] [Google Scholar]
- Klebanoff S. J., Clem W. H., Luebke R. G. The peroxidase-thiocyanate-hydrogen peroxide antimicrobial system. Biochim Biophys Acta. 1966 Mar 28;117(1):63–72. doi: 10.1016/0304-4165(66)90152-8. [DOI] [PubMed] [Google Scholar]
- Kopriwa B M. A semiautomatic instrument for the radioautographic coating technique. J Histochem Cytochem. 1966 Dec;14(12):923–928. doi: 10.1177/14.12.923. [DOI] [PubMed] [Google Scholar]
- Mickelson M. N. Effect of lactoperoxidase and thiocyanate on the growth of Streptococcus pyogenes and Streptococcus agalactiae in a chemically defined culture medium. J Gen Microbiol. 1966 Apr;43(1):31–43. doi: 10.1099/00221287-43-1-31. [DOI] [PubMed] [Google Scholar]
- Oram J. D., Reiter B. The inhibition of streptococci by lactoperoxidase, thiocyanate and hydrogen peroxide. The effect of the inhibitory system on susceptible and resistant strains of group N streptococci. Biochem J. 1966 Aug;100(2):373–381. doi: 10.1042/bj1000373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oram J. D., Reiter B. The inhibition of streptococci by lactoperoxidase, thiocyanate and hydrogen peroxide. The oxidation of thiocyanate and the nature of the inhibitory compound. Biochem J. 1966 Aug;100(2):382–388. doi: 10.1042/bj1000382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RICHARDSON K. C., JARETT L., FINKE E. H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 1960 Nov;35:313–323. doi: 10.3109/10520296009114754. [DOI] [PubMed] [Google Scholar]
- Rous P. THE RELATIVE REACTION WITHIN LIVING MAMMALIAN TISSUES : I. GENERAL FEATURES OF VITAL STAINING WITH LITMUS. J Exp Med. 1925 Feb 28;41(3):379–397. doi: 10.1084/jem.41.3.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHULTZ J., KAMINKER K. Myeloperoxidase of the leucocyte of normal human blood. I. Content and localization. Arch Biochem Biophys. 1962 Mar;96:465–467. doi: 10.1016/0003-9861(62)90321-1. [DOI] [PubMed] [Google Scholar]
- SIEGEL E., SACHS B. A. IN VITRO LEUKOCYTE UPTAKE OF 131-I LABELED IODIDE, THYROXINE AND TRIIODOTHYRONINE, AND ITS RELATION TO THYROID FUNCTION. J Clin Endocrinol Metab. 1964 Apr;24:313–318. doi: 10.1210/jcem-24-4-313. [DOI] [PubMed] [Google Scholar]
- Schultz J., Corlin R., Oddi F., Kaminker K., Jones W. Myeloperoxidase of the leucocyte of normal human blood. 3. Isolation of the peroxidase granule. Arch Biochem Biophys. 1965 Jul;111(1):73–79. doi: 10.1016/0003-9861(65)90324-3. [DOI] [PubMed] [Google Scholar]
- ZELDOW B. J. Studies on the antibacterial action of human saliva. III. Cofactor requirements of Lactobacillus bactericidin. J Immunol. 1963 Jan;90:12–16. [PubMed] [Google Scholar]
- ZUCKER-FRANKLIN D., HIRSCH J. G. ELECTRON MICROSCOPE STUDIES ON THE DEGRANULATION OF RABBIT PERITONEAL LEUKOCYTES DURING PHAGOCYTOSIS. J Exp Med. 1964 Oct 1;120:569–576. doi: 10.1084/jem.120.4.569. [DOI] [PMC free article] [PubMed] [Google Scholar]