Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1968 Jun 1;127(6):1073–1086. doi: 10.1084/jem.127.6.1073

STUDIES ON THE MODE OF ACTION OF DIPHTHERIA TOXIN

VI. SITE OF THE ACTION OF TOXIN IN LIVING CELLS

A M Pappenheimer Jr 1, Robin Brown 1
PMCID: PMC2138498  PMID: 4297479

Abstract

Using the technique of radioautography, it has been shown that a probable maximum of only 25–50 molecules iodine-125-labeled toxin per cell is bound by human HeLa cells treated with approximately 107 molecules of toxin per cell, or just under one saturating dose. Radioautographs of sections from labeled cells locate most if not all of the toxin molecules fixed to the outer cell membrane. Under identical conditions far less label is taken up by mouse L cells. It is probable that the resistance of this species to diphtheria toxin can be accounted for in terms of the failure of mouse cells to bind the toxin protein. The irreversible inhibition of protein synthesis in a living cell culture by a few molecules of toxin located at the cell surface is discussed in relation to the known interaction between toxin, NAD, and transferase II in mammalian cell extracts.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ada G. L., Humphrey J. H., Askonas B. A., McDevitt H. O., Nossal G. J. Correlation of grain counts with radioactivity (125I and tritium) in autoradiography. Exp Cell Res. 1966 Mar;41(3):557–572. doi: 10.1016/s0014-4827(66)80106-4. [DOI] [PubMed] [Google Scholar]
  2. COLLIER R. J., PAPPENHEIMER A. M., Jr STUDIES ON THE MODE OF ACTION OF DIPHTHERIA TOXIN. II. EFFECT OF TOXIN ON AMINO ACID INCORPORATION IN CELL-FREE SYSTEMS. J Exp Med. 1964 Dec 1;120:1019–1039. doi: 10.1084/jem.120.6.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ehrenreich B. A., Cohn Z. A. The uptake and digestion of iodinated human serum albumin by macrophages in vitro. J Exp Med. 1967 Nov 1;126(5):941–958. doi: 10.1084/jem.126.5.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. GABLIKS J., SOLOTOROVSKY M. Cell culture reactivity to diphtheria, Staphylococcus, tetanus and Escherichia coli toxins. J Immunol. 1962 Apr;88:505–512. [PubMed] [Google Scholar]
  5. GASIOR E., MOLDAVE K. RESOLUTION OF AMINOACYL-TRANSFERRING ENZYMES FROM RAT LIVER BY MOLECULAR SIEVE CHROMATOGRAPHY. J Biol Chem. 1965 Aug;240:3346–3352. [PubMed] [Google Scholar]
  6. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goor R. S. New form of diphtheria toxin. Nature. 1968 Mar 16;217(5133):1051–1053. doi: 10.1038/2171051a0. [DOI] [PubMed] [Google Scholar]
  8. Goor R. S., Pappenheimer A. M., Jr, Ames E. Studies on the mode of action of diphtheria toxin. V. Inhibition of peptide bond formation by toxin and NAD in cell-free systems and its reversal by nicotinamide. J Exp Med. 1967 Nov 1;126(5):923–939. doi: 10.1084/jem.126.5.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goor R. S., Pappenheimer A. M., Jr Studies on the mode of action of diphtheria toxin. 3. Site of toxin action in cell-free extracts. J Exp Med. 1967 Nov 1;126(5):899–912. doi: 10.1084/jem.126.5.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goor R. S., Pappenheimer A. M., Jr Studies on the mode of action of diphtheria toxin. IV. Specificity of the cofactor (NAD) requirement for toxin action in cell-free systems. J Exp Med. 1967 Nov 1;126(5):913–921. doi: 10.1084/jem.126.5.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LENNOX E. S., KAPLAN A. S. Action of diphtheria toxin on cells cultivated in vitro. Proc Soc Exp Biol Med. 1957 Aug-Sep;95(4):700–702. doi: 10.3181/00379727-95-23335. [DOI] [PubMed] [Google Scholar]
  12. Mesrobeanu I., Bona C., Ioanid L., Mesrobeanu L. Pinocytosis of some exotoxins by leucocytes. Pinocytosis of diphtheria toxin and of dick erythrotoxin. Exp Cell Res. 1966 Jun;42(3):490–499. doi: 10.1016/0014-4827(66)90263-1. [DOI] [PubMed] [Google Scholar]
  13. Moehring T. J., Moehring J. M., Kuchler R. J., Solotorovsky M. The response of cultured mammalian cells to diphtheria toxin. I. Amino acid transport, accumulation, and incorporation in normal and intoxicated sensitive cells. J Exp Med. 1967 Sep 1;126(3):407–422. doi: 10.1084/jem.126.3.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Montanaro L., Sperti S. Binding of nicotinamide-adenine dinucleotides to diphtheria toxin. Biochem J. 1967 Nov;105(2):635–640. doi: 10.1042/bj1050635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. RAYNAUD M., BIZZINI B., RELYVELD E. H. COMPOSITION EN AMINO-ACIDES DE LA TOXINE DIPHT'ERIQUE PURIFI'EE. Bull Soc Chim Biol (Paris) 1965;47:261–266. [PubMed] [Google Scholar]
  16. RAYNAUD M., RELYVELD E. H. [Diphtheria toxin-antitoxin reaction]. Ann Inst Pasteur (Paris) 1959 Nov;97:636–678. [PubMed] [Google Scholar]
  17. ROSE G. G. Microkinetospheres and VP satellites of pinocytic cells observed in tissue cultures of Gey's strain HeLa with phase contrast cinematographic techniques. J Biophys Biochem Cytol. 1957 Sep 25;3(5):697–704. doi: 10.1083/jcb.3.5.697. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES