Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1968 Oct 31;128(5):1031–1048. doi: 10.1084/jem.128.5.1031

ISOZYMES OF ACID PHOSPHATASE IN NORMAL AND CALMETTE-GUÉRIN BACILLUS-INDUCED RABBIT ALVEOLAR MACROPHAGES

S G Axline 1
PMCID: PMC2138558  PMID: 4878908

Abstract

The acid phosphatase activity of normal alveolar and BCG-induced alveolar macrophages has been examined. Five electrophoretically distinct forms of acid phosphatase have been identified in both normal and BCG-induced macrophages. The acid phosphatases can be divided into two major categories. One category, containing four distinct forms, is readily solubilized after repeated freezing and thawing or mechanical disruption The second category, containing one form, is firmly bound to the lysosomal membrane and can be solubilized by treatment of the lysosomal fraction with Triton X-100. The Triton-extractable acid phosphatase and the predominant aqueous soluble acid phosphatase have been shown to differ in the degree of membrane binding, in solubility, in net charge, and in molecular weight. The two pre-dominant phosphatases possess identical pH optimum and do not differ in response to enzyme inhibitors. BCG stimulation has been shown to result in a nearly twofold increase in acid phosphatase activity. A nearly proportionate increase in the major acid phosphatase forms has been observed.

Full Text

The Full Text of this article is available as a PDF (949.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLEN J. M., GOCKERMAN J. ELECTROPHORETIC SEPARATION OF MULTIPLE FORMS OF PARTICLE ASSOCIATED ACID PHOSPHATASE. Ann N Y Acad Sci. 1964 Dec 28;121:616–633. doi: 10.1111/j.1749-6632.1964.tb14230.x. [DOI] [PubMed] [Google Scholar]
  2. APPELMANS F., DE DUVE C. Tissue fractionation studies. 3. Further observations on the binding of acid phosphatase by rat-liver particles. Biochem J. 1955 Mar;59(3):426–433. doi: 10.1042/bj0590426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BARKA T. Studies of acid phosphatase. I. Electrophoretic separation of acid phosphatases of rat liver on polyacrylamide gels. J Histochem Cytochem. 1961 Sep;9:542–547. doi: 10.1177/9.5.542. [DOI] [PubMed] [Google Scholar]
  4. BARKA T. Studies on acid phosphatases. II. Chromatographic separation of acid phosphatases of rat liver. J Histochem Cytochem. 1961 Sep;9:564–571. doi: 10.1177/9.5.564. [DOI] [PubMed] [Google Scholar]
  5. BERTHET J., DE DUVE C. Tissue fractionation studies. I. The existence of a mitochondria-linked, enzymically inactive form of acid phosphatase in rat-liver tissue. Biochem J. 1951 Dec;50(2):174–181. doi: 10.1042/bj0500174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BOUGHTON B., MACKENNA R. M., WHEATLEY V. R., WORMALL A. Studies of sebum. VIII. Observations on the squalene and cholesterol content and the possible functions of squalene in human sebum. Biochem J. 1957 May;66(1):32–38. doi: 10.1042/bj0660032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. BROOME J. D. Evidence that the L-asparaginase of guinea pig serum is responsible for its antilymphoma effects. I. Properties of the L-asparaginase of guinea pig serum in relation to those of the antilymphoma substance. J Exp Med. 1963 Jul;118:99–120. doi: 10.1084/jem.118.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Beck C., Tappel A. L. Rat-liver lysosomal beta-glucosidase: a membrane enzyme. Biochim Biophys Acta. 1968 Jan 8;151(1):159–164. doi: 10.1016/0005-2744(68)90170-8. [DOI] [PubMed] [Google Scholar]
  9. COHN Z. A., BENSON B. THE DIFFERENTIATION OF MONONUCLEAR PHAGOCYTES. MORPHOLOGY, CYTOCHEMISTRY, AND BIOCHEMISTRY. J Exp Med. 1965 Jan 1;121:153–170. doi: 10.1084/jem.121.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. COHN Z. A., HIRSCH J. G. The isolation and properties of the specific cytoplasmic granules of rabbit polymorphonuclear leucocytes. J Exp Med. 1960 Dec 1;112:983–1004. doi: 10.1084/jem.112.6.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. CONCHIE J., HAY A. J. Mammalian glycosidases. 4. The intracellular localization of beta-galactosidase, alpha-mannosidase, beta-N-acetylglucosaminidase and alpha-L-fucosidase in mammalian tissues. Biochem J. 1963 May;87:354–361. doi: 10.1042/bj0870354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  13. DE DUVE C., PRESSMAN B. C., GIANETTO R., WATTIAUX R., APPELMANS F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955 Aug;60(4):604–617. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fenton M. R., Richardson K. E. Isolation of three acid phosphatase isozymes from human erythocytes. Arch Biochem Biophys. 1967 May;120(2):332–337. doi: 10.1016/0003-9861(67)90247-0. [DOI] [PubMed] [Google Scholar]
  15. GORIN G., FUCHS E., BUTLER L. G., CHOPRA S. L., HERSH R. T. Some properties of urease. Biochemistry. 1962 Sep;1:911–916. doi: 10.1021/bi00911a026. [DOI] [PubMed] [Google Scholar]
  16. HEISE E. R., MYRVIK Q. N., LEAKE E. S. EFFECT OF BACILLUS CALMETTE-GU'ERIN ON THE LEVELS OF ACID PHOSPHATASE, LYSOZYME AND CATHEPSIN IN RABBIT ALVEOLAR MACROPHAGES. J Immunol. 1965 Jul;95:125–130. [PubMed] [Google Scholar]
  17. HIRSCH J. G., COHN Z. A. Degranulation of polymorphonuclear leucocytes following phagocytosis of microorganisms. J Exp Med. 1960 Dec 1;112:1005–1014. doi: 10.1084/jem.112.6.1005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MARGOLIASH E. Some structural aspects of cytochrome c function. Brookhaven Symp Biol. 1962 Dec;15:266–281. [PubMed] [Google Scholar]
  19. MYRVIK Q., LEAKE E. S., FARISS B. Studies on pulmonary alveolar macrophages from the normal rabbit: a technique to procure them in a high state of purity. J Immunol. 1961 Feb;86:128–132. [PubMed] [Google Scholar]
  20. Mizunoe K., Dannenberg A. M., Jr Hydrolases of rabbit macrophages. 3. Effect of BCG vaccination, tissue culture, and ingested tubercle bacilli. Proc Soc Exp Biol Med. 1965 Nov;120(2):284–290. doi: 10.3181/00379727-120-30513. [DOI] [PubMed] [Google Scholar]
  21. RAYMOND S., WEINTRAUB L. Acrylamide gel as a supporting medium for zone electrophoresis. Science. 1959 Sep 18;130(3377):711–711. doi: 10.1126/science.130.3377.711. [DOI] [PubMed] [Google Scholar]
  22. REISFELD R. A., LEWIS U. J., WILLIAMS D. E. Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature. 1962 Jul 21;195:281–283. doi: 10.1038/195281a0. [DOI] [PubMed] [Google Scholar]
  23. STRAUS W. Concentration of acid phosphatase, ribonuclease, desoxyribonuclease, beta-glucuronidase, and cathepsin in droplets isolated from the kidney cells of normal rats. J Biophys Biochem Cytol. 1956 Sep 25;2(5):513–521. doi: 10.1083/jcb.2.5.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tappan D. V. A light scattering technique for measuring protein concentration. Anal Biochem. 1966 Feb;14(2):171–182. doi: 10.1016/0003-2697(66)90125-4. [DOI] [PubMed] [Google Scholar]
  25. UGAZIO G., PANI P. DIFFERENTIAL RELEASE OF BOUND HYDROLASES FROM RAT-LIVER LYSOSOMES TREATED BY A NON-IONIC SURFACE ACTIVE SUBSTANCE. Exp Cell Res. 1963 Aug;31:424–427. doi: 10.1016/0014-4827(63)90019-3. [DOI] [PubMed] [Google Scholar]
  26. Weissmann B., Rowin G., Marshall J., Friederici D. Mammalian alpha-acetylglucosaminidase. Enzymic properties, tissue distribution, and intracellular localization. Biochemistry. 1967 Jan;6(1):207–214. doi: 10.1021/bi00853a033. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES