Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1987 Oct;169(10):4790–4795. doi: 10.1128/jb.169.10.4790-4795.1987

Characterization of Pi-repressible enzymes secreted in culture media by Neurospora crassa wild-type cells and null-type mutants.

K Furukawa 1, K Hasunuma 1, Y Shinohara 1
PMCID: PMC213856  PMID: 2820943

Abstract

In wild-type mycelial cultures of Neurospora crassa under Pi-limited conditions, alkaline phosphatase, cyclic phosphodiesterases I, II, III, and IV, 5'-nucleotidase, acid and alkaline nucleases, RNase N1, and a newly detected endonuclease were secreted into the culture media. These enzymes were either not produced or were produced in very reduced levels in mutants nuc-1, -2, -3, -4, -5, -6, and -7 and cpd-4. The proteins were examined by polyacrylamide gel electrophoresis in a manner which allowed the identification of each of them.

Full text

PDF
4790

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Forsthoefel A. M., Mishra N. C. Biochemical genetics of Neurospora nuclease I: Isolation and characterization of nuclease (nuc) mutants. Genet Res. 1983 Jun;41(3):271–286. doi: 10.1017/s0016672300021339. [DOI] [PubMed] [Google Scholar]
  2. Fraser M. J., Chow T. Y., Käfer E. Nucleases and their control in wild-type and nuh mutants of Neurospora. Basic Life Sci. 1980;15:63–74. doi: 10.1007/978-1-4684-3842-0_5. [DOI] [PubMed] [Google Scholar]
  3. Gleason M. K., Metzenberg R. L. Regulation of phosphate metabolism in Neurospora crassa: isolation of mutants deficient in ther repressible alkaline phosphatase. Genetics. 1974 Oct;78(2):645–659. doi: 10.1093/genetics/78.2.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Grove G., Marzluf G. A. Nitrogen regulation of acid phosphatase in Neurospora crassa. J Bacteriol. 1980 Mar;141(3):1470–1473. doi: 10.1128/jb.141.3.1470-1473.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hashimoto J., Uchida T., Egami F. Purification of ribonuclease U 1 and some properties of ribonucleases U 1 and N 1 . J Biochem. 1971 Dec;70(6):903–911. doi: 10.1093/oxfordjournals.jbchem.a129720. [DOI] [PubMed] [Google Scholar]
  6. Hasunuma K. Control of the activity of intracellular nucleases in Neurospora crassa. Mol Gen Genet. 1978 Apr 17;160(3):259–265. doi: 10.1007/BF00332969. [DOI] [PubMed] [Google Scholar]
  7. Hasunuma K., Ishikawa T. Control of the production and partial characterization of repressible extracellular 5'-nucleotidase and alkaline phosphatase in Neurospora crass. Biochim Biophys Acta. 1977 Jan 11;480(1):178–193. doi: 10.1016/0005-2744(77)90332-1. [DOI] [PubMed] [Google Scholar]
  8. Hasunuma K., Ishikawa T. Control of the production and partial characterization of repressible extracellular 5'-nucleotidase and alkaline phosphatase in Neurospora crass. Biochim Biophys Acta. 1977 Jan 11;480(1):178–193. doi: 10.1016/0005-2744(77)90332-1. [DOI] [PubMed] [Google Scholar]
  9. Hasunuma K. Repressible extracellular nucleases in Neurospora crassa. Biochim Biophys Acta. 1973 Sep 7;319(3):288–293. doi: 10.1016/0005-2787(73)90168-8. [DOI] [PubMed] [Google Scholar]
  10. Hasunuma K. Repressible extracellular phosphodiesterases showing cyclic 2',3'- and cyclic 3',5'-nucleotide phosphodiesterase activities in Neurospora crassa. J Bacteriol. 1983 Oct;156(1):291–300. doi: 10.1128/jb.156.1.291-300.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hasunuma K., Shinohara Y. Characterization of cpd-1 and cpd-2 mutants which affect the activity of orthophosphate regulated cyclic phosphodiesterase in Neurospora. Curr Genet. 1985;10(3):197–203. doi: 10.1007/BF00798749. [DOI] [PubMed] [Google Scholar]
  12. Hasunuma K., Shinohara Y. Mutations affecting cyclic phosphodiesterases and adenylate cyclase in Neurospora. Curr Genet. 1986;10(12):893–901. doi: 10.1007/BF00398286. [DOI] [PubMed] [Google Scholar]
  13. Ishikawa T., Toh-E A., Uno I., Hasunuma K. Isolation and characterization of nuclease mutants in Neurospora crassa. Genetics. 1969 Sep;63(1):75–92. doi: 10.1093/genetics/63.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kadner R. J., Nyc J. F., Brown D. M. A repressible alkaline phosphatase in Neurospora crassa. II. Isolation and chemical properties. J Biol Chem. 1968 Jun 10;243(11):3076–3082. [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Lehman J. F., Metzenberg R. L. Regulation of phosphate metabolism in Neurospora crassa: identification of the structural gene for repressible alkaline phosphatase. Genetics. 1976 Oct;84(2):175–182. doi: 10.1093/genetics/84.2.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lindberg R. A., Drucker H. Characterization and comparison of a Neurospora crassa RNase purified from cultures undergoing each of three different states of derepression. J Bacteriol. 1984 Feb;157(2):375–379. doi: 10.1128/jb.157.2.375-379.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lindberg R. A., Drucker H. Regulation of a Neurospora crassa extracellular RNase by phosphorus, nitrogen, and carbon derepressions. J Bacteriol. 1984 Feb;157(2):380–384. doi: 10.1128/jb.157.2.380-384.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mishra N. C., Forsthoefel A. M. Biochemical genetics of Neurospora nuclease II: Mutagen sensitivity and other characteristics of the nuclease mutants. Genet Res. 1983 Jun;41(3):287–297. doi: 10.1017/s0016672300021340. [DOI] [PubMed] [Google Scholar]
  21. Nyc J. F., Kadner R. J., Crocken B. J. A repressible alkaline phosphatase in Neurospora crassa. J Biol Chem. 1966 Apr 10;241(7):1468–1472. [PubMed] [Google Scholar]
  22. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  23. Ptashne M., Jeffrey A., Johnson A. D., Maurer R., Meyer B. J., Pabo C. O., Roberts T. M., Sauer R. T. How the lambda repressor and cro work. Cell. 1980 Jan;19(1):1–11. doi: 10.1016/0092-8674(80)90383-9. [DOI] [PubMed] [Google Scholar]
  24. Shinohara Y., Furukawa K., Hasunuma K. A regulatory protein for orthophosphate-regulated cyclic phosphodiesterase in Neurospora crassa. Biochem Biophys Res Commun. 1985 Aug 15;130(3):1015–1019. doi: 10.1016/0006-291x(85)91716-4. [DOI] [PubMed] [Google Scholar]
  25. Tait-Kamradt A. G., Turner K. J., Kramer R. A., Elliott Q. D., Bostian S. J., Thill G. P., Rogers D. T., Bostian K. A. Reciprocal regulation of the tandemly duplicated PHO5/PHO3 gene cluster within the acid phosphatase multigene family of Saccharomyces cerevisiae. Mol Cell Biol. 1986 Jun;6(6):1855–1865. doi: 10.1128/mcb.6.6.1855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tommassen J., Lugtenberg B. PHO-regulon of Escherichia coli K12: a minireview. Ann Microbiol (Paris) 1982 Mar-Apr;133(2):243–249. [PubMed] [Google Scholar]
  27. Wanner B. L., McSharry R. Phosphate-controlled gene expression in Escherichia coli K12 using Mudl-directed lacZ fusions. J Mol Biol. 1982 Jul 5;158(3):347–363. doi: 10.1016/0022-2836(82)90202-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES