Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1987 Oct;169(10):4811–4815. doi: 10.1128/jb.169.10.4811-4815.1987

Pheromone induction of agglutination in Saccharomyces cerevisiae a cells.

K Terrance 1, P N Lipke 1
PMCID: PMC213859  PMID: 3308855

Abstract

a-Agglutinin, the cell surface sexual agglutinin of yeast a cells, was assayed by its ability to bind its complementary agglutinin, alpha-agglutinin. The specific binding of 125I-alpha-agglutinin to a cells treated with the sex pheromone alpha-factor was 2 to 2.5 times that of binding to a cells not treated with alpha-factor. Competition with unlabeled alpha-agglutinin revealed that the increased binding was due to increased cell surface expression of a-agglutinin, with no apparent change in the binding constant. The increase in site number was similar to the increase in cellular agglutinability. Increased expression of a-agglutinin followed the same kinetics as the increase in cellular agglutinability, with a 10-min lag followed by a 15- to 20-min response time. Induction kinetics were similar in cells in phases G1 and G2 of the cell cycle. Maximal expression levels were similar in cells treated with excess pheromone and in cells exposed to pheromone after destruction of constitutively expressed a-agglutinin.

Full text

PDF
4811

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baffi R. A., Becker J. M., Lipke P. N., Naider F. Structure-activity relationships in the dodecapeptide alpha-factor of Saccharomyces cerevisiae: position 6 analogues are poor inducers of agglutinability. Biochemistry. 1985 Jun 18;24(13):3332–3337. doi: 10.1021/bi00334a038. [DOI] [PubMed] [Google Scholar]
  2. Baffi R. A., Shenbagamurthi P., Terrance K., Becker J. M., Naider F., Lipke P. N. Different structure-function relationships for alpha-factor-induced morphogenesis and agglutination in Saccharomyces cerevisiae. J Bacteriol. 1984 Jun;158(3):1152–1156. doi: 10.1128/jb.158.3.1152-1156.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bender A., Sprague G. F., Jr Yeast peptide pheromones, a-factor and alpha-factor, activate a common response mechanism in their target cells. Cell. 1986 Dec 26;47(6):929–937. doi: 10.1016/0092-8674(86)90808-1. [DOI] [PubMed] [Google Scholar]
  4. Berridge M. J., Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984 Nov 22;312(5992):315–321. doi: 10.1038/312315a0. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Campbell D. A. Kinetics of the mating-specific aggregation in Saccharomyces cerevisiae. J Bacteriol. 1973 Oct;116(1):323–330. doi: 10.1128/jb.116.1.323-330.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Casperson G. F., Walker N., Brasier A. R., Bourne H. R. A guanine nucleotide-sensitive adenylate cyclase in the yeast Saccharomyces cerevisiae. J Biol Chem. 1983 Jul 10;258(13):7911–7914. [PubMed] [Google Scholar]
  8. Chan R. K. Recovery of Saccharomyces cerevisiae mating-type a cells from G1 arrest by alpha factor. J Bacteriol. 1977 May;130(2):766–774. doi: 10.1128/jb.130.2.766-774.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doi S., Yoshimura M. Alpha mating type-specific expression of mutations leading to constitutive agglutinability in Saccharomyces cerevisiae. J Bacteriol. 1985 Feb;161(2):596–601. doi: 10.1128/jb.161.2.596-601.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fehrenbacher G., Perry K., Thorner J. Cell-cell recognition in Saccharomyces cerevisiae: regulation of mating-specific adhesion. J Bacteriol. 1978 Jun;134(3):893–901. doi: 10.1128/jb.134.3.893-901.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hartwell L. H. Synchronization of haploid yeast cell cycles, a prelude to conjugation. Exp Cell Res. 1973 Jan;76(1):111–117. doi: 10.1016/0014-4827(73)90425-4. [DOI] [PubMed] [Google Scholar]
  12. Hasegawa S., Yanagishima N. Alpha-mating-type-specific suppression and a-mating-type-specific enhancement by tunicamycin of sexual agglutinability in the yeast Saccharomyces cerevisiae. Arch Microbiol. 1984 Aug;138(4):310–314. doi: 10.1007/BF00410896. [DOI] [PubMed] [Google Scholar]
  13. Lamb A. J., Clark-Walker G. D., Linnane A. W. The biogenesis of mitochondria. 4. The differentiation of mitochondrial and cytoplasmic protein synthesizing systems in vitro by antibiotics. Biochim Biophys Acta. 1968 Jul 23;161(2):415–427. [PubMed] [Google Scholar]
  14. Liao H. H., Thorner J. Adenosine 3',5'-phosphate phosphodiesterase and pheromone response in the yeast Saccharomyces cerevisiae. J Bacteriol. 1981 Dec;148(3):919–925. doi: 10.1128/jb.148.3.919-925.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Liao H., Thorner J. Yeast mating pheromone alpha factor inhibits adenylate cyclase. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1898–1902. doi: 10.1073/pnas.77.4.1898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lipke P. N., Terrance K., Wu Y. S. Interaction of alpha-agglutinin with Saccharomyces cerevisiae a cells. J Bacteriol. 1987 Feb;169(2):483–488. doi: 10.1128/jb.169.2.483-488.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Matsumoto K., Uno I., Ishikawa T. Control of cell division in Saccharomyces cerevisiae mutants defective in adenylate cyclase and cAMP-dependent protein kinase. Exp Cell Res. 1983 Jun;146(1):151–161. doi: 10.1016/0014-4827(83)90333-6. [DOI] [PubMed] [Google Scholar]
  18. Moore S. A. Yeast cells recover from mating pheromone alpha factor-induced division arrest by desensitization in the absence of alpha factor destruction. J Biol Chem. 1984 Jan 25;259(2):1004–1010. [PubMed] [Google Scholar]
  19. Müller R. Determination of affinity and specificity of anti-hapten antibodies by competitive radioimmunoassay. Methods Enzymol. 1983;92:589–601. doi: 10.1016/0076-6879(83)92046-3. [DOI] [PubMed] [Google Scholar]
  20. Nakagawa Y., Yanagishima N. Recessive and dominant genes controlling inducible sexual agglutinability in Saccharomyces cerevisiae. Mol Gen Genet. 1981;183(3):459–462. doi: 10.1007/BF00268765. [DOI] [PubMed] [Google Scholar]
  21. Shimoda C., Yanagishima N., Sakurai A., Tamura S. Mating reaction in Saccharomyces cerevisiae. IX. Regulation of sexual cell agglutinability of a type cells by a sex factor produced by alpha type cells. Arch Microbiol. 1976 May 3;108(1):27–33. doi: 10.1007/BF00425089. [DOI] [PubMed] [Google Scholar]
  22. Sprague G. F., Jr, Blair L. C., Thorner J. Cell interactions and regulation of cell type in the yeast Saccharomyces cerevisiae. Annu Rev Microbiol. 1983;37:623–660. doi: 10.1146/annurev.mi.37.100183.003203. [DOI] [PubMed] [Google Scholar]
  23. Terrance K., Heller P., Wu Y. S., Lipke P. N. Identification of glycoprotein components of alpha-agglutinin, a cell adhesion protein from Saccharomyces cerevisiae. J Bacteriol. 1987 Feb;169(2):475–482. doi: 10.1128/jb.169.2.475-482.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Terrance K., Lipke P. N. Sexual agglutination in Saccharomyces cerevisiae. J Bacteriol. 1981 Dec;148(3):889–896. doi: 10.1128/jb.148.3.889-896.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES