Abstract
When diphtheria toxin and NAD are added to soluble fractions containing aminoacyl transfer enzymes isolated from rabbit reticulocytes or from HeLa cells, free nicotinamide is released and, simultaneously, an inactive ADP ribose derivative of transferase II is formed. The reaction is reversible, and in the presence of excess nicotinamide, toxin catalyzes the restoration of aminoacyl transfer activity in intoxicated preparations. In living cultures of HeLa cells, the internal NAD concentration is sufficiently high to account for the rapid conversion, catalyzed by a few toxin molecules located in the cell membrane, of the entire cell content of free transferase II to its inactive ADP ribose derivative. Completely inactive ammonium sulfate fractions containing soluble proteins isolated from cells that have been exposed for several hours to excess toxin, can be reactivated to full aminoacyl transfer activity by addition of nicotinamide together with diphtheria toxin. Transferase II appears to be a highly specific substrate for the toxin-stimulated splitting of NAD and thus far no other protein acceptor for the ADP ribose moiety has been found.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AJL S. J., RUST J. The biochemistry and physiology of the plague murine toxin. Ann N Y Acad Sci. 1960 Nov 21;88:1152–1154. doi: 10.1111/j.1749-6632.1960.tb20105.x. [DOI] [PubMed] [Google Scholar]
- ALLEN E. H., SCHWEET R. S. Synthesis of hemoglobin in a cell-free system. I. Properties of the complete system. J Biol Chem. 1962 Mar;237:760–767. [PubMed] [Google Scholar]
- Arlinghaus R., Shaeffer J., Bishop J., Schweet R. Purification of the transfer enzymes from reticulocytes and properties of the transfer reaction. Arch Biochem Biophys. 1968 May;125(2):604–613. doi: 10.1016/0003-9861(68)90619-x. [DOI] [PubMed] [Google Scholar]
- BERNHEIMER A. W., LAZARIDES P. D., WILSON A. T. Diphosphopyridine nucleotidase as an extracellular product of streptococcal growth and its possible relationship to leukotoxicity. J Exp Med. 1957 Jul 1;106(1):27–37. doi: 10.1084/jem.106.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COLLIER R. J., PAPPENHEIMER A. M., Jr STUDIES ON THE MODE OF ACTION OF DIPHTHERIA TOXIN. II. EFFECT OF TOXIN ON AMINO ACID INCORPORATION IN CELL-FREE SYSTEMS. J Exp Med. 1964 Dec 1;120:1019–1039. doi: 10.1084/jem.120.6.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capecchi M. R. Cell-free protein synthesis programmed with R17 RNA: identification of two phage proteins. J Mol Biol. 1966 Oct 28;21(1):173–193. doi: 10.1016/0022-2836(66)90086-6. [DOI] [PubMed] [Google Scholar]
- Collier R. J. Effect of diphtheria toxin on protein synthesis: inactivation of one of the transfer factors. J Mol Biol. 1967 Apr 14;25(1):83–98. doi: 10.1016/0022-2836(67)90280-x. [DOI] [PubMed] [Google Scholar]
- DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
- GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goor R. S. New form of diphtheria toxin. Nature. 1968 Mar 16;217(5133):1051–1053. doi: 10.1038/2171051a0. [DOI] [PubMed] [Google Scholar]
- Goor R. S., Pappenheimer A. M., Jr, Ames E. Studies on the mode of action of diphtheria toxin. V. Inhibition of peptide bond formation by toxin and NAD in cell-free systems and its reversal by nicotinamide. J Exp Med. 1967 Nov 1;126(5):923–939. doi: 10.1084/jem.126.5.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goor R. S., Pappenheimer A. M., Jr Studies on the mode of action of diphtheria toxin. 3. Site of toxin action in cell-free extracts. J Exp Med. 1967 Nov 1;126(5):899–912. doi: 10.1084/jem.126.5.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goor R. S., Pappenheimer A. M., Jr Studies on the mode of action of diphtheria toxin. IV. Specificity of the cofactor (NAD) requirement for toxin action in cell-free systems. J Exp Med. 1967 Nov 1;126(5):913–921. doi: 10.1084/jem.126.5.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOFMANN E. C. Abbau und Synthese des DPN in den roten Blutkörperchen des Kaninchens. Biochem Z. 1955;327(4):273–283. [PubMed] [Google Scholar]
- Honjo T., Nishizuka Y., Hayaishi O. Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis. J Biol Chem. 1968 Jun 25;243(12):3553–3555. [PubMed] [Google Scholar]
- KATO I., PAPPENHEIMER A. M., Jr An early effect of diphtheria toxin on the metabolism of mammalian cells growing in culture. J Exp Med. 1960 Aug 1;112:329–349. doi: 10.1084/jem.112.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moehring T. J., Moehring J. M., Kuchler R. J., Solotorovsky M. The response of cultured mammalian cells to diphtheria toxin. I. Amino acid transport, accumulation, and incorporation in normal and intoxicated sensitive cells. J Exp Med. 1967 Sep 1;126(3):407–422. doi: 10.1084/jem.126.3.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moehring T. J., Moehring J. M. Response of cultured mammalian cells to diphtheria toxin. 3. Inhibition of protein synthesis studied at the subcellular level. J Bacteriol. 1968 Jul;96(1):61–69. doi: 10.1128/jb.96.1.61-69.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montanaro L., Sperti S. Binding of nicotinamide-adenine dinucleotides to diphtheria toxin. Biochem J. 1967 Nov;105(2):635–640. doi: 10.1042/bj1050635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pappenheimer A. M., Jr, Brown R. Studies on the mode of action of diphtheria toxin. VI. Site of the action of toxin in living cells. J Exp Med. 1968 Jun 1;127(6):1073–1086. doi: 10.1084/jem.127.6.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STRAUSS N., HENDEE E. D. The effect of diphtheria toxin on the metabolism of HeLa cells. J Exp Med. 1959 Feb 1;109(2):145–163. doi: 10.1084/jem.109.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skogerson L., Moldave K. Evidence for aminoacyl-tRNA binding, peptide bond synthesis, and translocase activities in the aminoacyl transfer reaction. Arch Biochem Biophys. 1968 May;125(2):497–505. doi: 10.1016/0003-9861(68)90607-3. [DOI] [PubMed] [Google Scholar]
- Sperti S., Montanaro L. Competitive binding of adenine and nicotinamide-adenine dinucleotide to diphtheria toxin. Biochem J. 1968 May;107(5):730–732. doi: 10.1042/bj1070730. [DOI] [PMC free article] [PubMed] [Google Scholar]