Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1969 Feb 28;129(3):445–457. doi: 10.1084/jem.129.3.445

BIPHASIC PATTERN OF THYMUS REGENERATION AFTER WHOLE-BODY IRRADIATION

Akikazu Takada 1, Yumiko Takada 1, Chester C Huang 1, Julian L Ambrus 1
PMCID: PMC2138613  PMID: 4886041

Abstract

Whole-body irradiation of mice with 300 or 400 R causes a precipitous fall in thymus weight, followed by an increase in the mitotic index and an almost complete restoration of thymus mass. This phase is followed by a secondary fall in thymus weight and gradual recovery. This secondary fall can be prevented by intravenous injection of bone marrow or shielding of the hind limbs during irradiation. The hypothesis is proposed that the thymus depends on the migration of cells from the bone marrow to the thymus for the maintenance of its cell population. Bone marrow cells with chromosome markers injected intravenously into normal or lightly irradiated (150 R) animals do not populate the host bone marrow to any significant degree. After whole-body irradiation with heavy doses (400 R), donor cells dominate the marrow. There may be a competition between dividing cells in the bone marrow which regulates proliferation of hemic cells. Bone marrow cells with marker chromosomes do not repopulate the thymus in irradiated animals until long after repopulating the bone marrow. It is possible that these cells have to pass through the marrow or the blood-marrow barrier to acquire characteristics needed for entering the thymus. After whole-body irradiation with 500 R or more, the first phase of regeneration of the thymus, represented by an increase in the mitotic index, does not occur to a significant degree. Apparently cells in the thymus capable of proliferation have been largely eliminated, and restoration of organ mass depends chiefly on seeding from other sources, probably the bone marrow. After whole-body irradiation with 200 R, only the first phase of thymus weight loss and regeneration takes place. Probably bone marrow injury is too small to interfere with the supply of cells repopulating the thymus.

Full Text

The Full Text of this article is available as a PDF (760.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BALNER H., DERSJANT H. EARLY LYMPHATIC REGENERATION IN THYMECTOMIZED RADIATION CHIMERAS. Nature. 1964 Dec 5;204:941–942. doi: 10.1038/204941a0. [DOI] [PubMed] [Google Scholar]
  2. Brumby M., Metcalf D. Migration of cells to the thymus demonstrated by parabiosis. Proc Soc Exp Biol Med. 1967 Jan;124(1):99–103. doi: 10.3181/00379727-124-31675. [DOI] [PubMed] [Google Scholar]
  3. CUDKOWICZ G., BENNETT M., SHEARER G. M. PLURIPOTENT STEM CELL FUNCTION OF THE MOUSE MARROW "LYMPHOCYTE". Science. 1964 May 15;144(3620):866–868. doi: 10.1126/science.144.3620.866. [DOI] [PubMed] [Google Scholar]
  4. CUDKOWICZ G., UPTON A. C., SHEARER G. M., HUGHES W. L. LYMPHOCYTE CONTENT AND PROLIFERATIVE CAPACITY OF SERIALLY TRANSPLANTED MOUSE BONE MARROW. Nature. 1964 Jan 11;201:165–167. doi: 10.1038/201165a0. [DOI] [PubMed] [Google Scholar]
  5. CUDKOWICZ G., UPTON A. C., SMITH L. H., GOSSLEE D. G., HUGHES W. L. AN APPROACH TO THE CHARACTERIZATION OF STEM CELLS IN MOUSE BONE MARROW. Ann N Y Acad Sci. 1964 Mar 31;114:571–585. doi: 10.1111/j.1749-6632.1964.tb53609.x. [DOI] [PubMed] [Google Scholar]
  6. Dukor P., Miller J. F., House W., Allman V. Regeneration of thymus grafts. I. Histological and cytological aspects. Transplantation. 1965 Sep;3(5):639–668. doi: 10.1097/00007890-196509000-00006. [DOI] [PubMed] [Google Scholar]
  7. FORD C. E., HAMERTON J. L. A colchicine, hypotonic citrate, squash sequence for mammalian chromosomes. Stain Technol. 1956 Nov;31(6):247–251. doi: 10.3109/10520295609113814. [DOI] [PubMed] [Google Scholar]
  8. FORD C. E., HAMERTON J. L., BARNES D. W., LOUTIT J. F. Cytological identification of radiation-chimaeras. Nature. 1956 Mar 10;177(4506):452–454. doi: 10.1038/177452a0. [DOI] [PubMed] [Google Scholar]
  9. FORD C. E., MICKLEM H. S. The thymus and lymph-nodes in radiation chimaeras. Lancet. 1963 Feb 16;1(7277):359–362. doi: 10.1016/s0140-6736(63)91385-0. [DOI] [PubMed] [Google Scholar]
  10. GENGOZIAN N., URSO I. S., CONGDON C. C., CONGER A. D., MAKINODAN T. Thymus specificity in lethally irradiated mice treated with rat bone marrow. Proc Soc Exp Biol Med. 1957 Dec;96(3):714–720. doi: 10.3181/00379727-96-23586. [DOI] [PubMed] [Google Scholar]
  11. GREEN I. THE REGENERATION OF F1 HOST CELL SPLEEN AND THYMUS AT ECTOPIC SITES IN F1 ANIMALS INDUCED BY IMPLANTATION OF PARENTAL SPLEEN AND THYMUS. J Exp Med. 1964 Apr 1;119:581–592. doi: 10.1084/jem.119.4.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HARRIS J. E., FORD C. E., BARNES D. W., EVANS E. P. EVIDENCE FROM PARABIOSIS FOR AN AFFERENT STREAM OF CELLS. Nature. 1964 Feb 29;201:886–887. doi: 10.1038/201886a0. [DOI] [PubMed] [Google Scholar]
  13. HARRIS J. E., FORD C. E. CELLULAR TRAFFIC OF THE THYMUS: EXPERIMENTS WITH CHROMOSOME MARKERS. EVIDENCE THAT THE THYMUS PLAYS AN INSTRUCTIONAL PART. Nature. 1964 Feb 29;201:884–885. doi: 10.1038/201884a0. [DOI] [PubMed] [Google Scholar]
  14. KIELAR R. A., MEINEKE H. A. SURVIVAL OF LETHALLY X-IRRADIATED RATS RECEIVING MARROW FROM NORMAL OR CHLORAMBUCIL-TREATED DONOR RATS. Radiat Res. 1963 Sep;20:1–7. [PubMed] [Google Scholar]
  15. Micklem H. S., Clarke C. M., Evans E. P., Ford C. E. Fate of chromosome-marked mouse bone marrow cells tranfused into normal syngeneic recipients. Transplantation. 1968 Mar;6(2):299–302. [PubMed] [Google Scholar]
  16. Micklem H. S., Ford C. E., Evans E. P., Gray J. Interrelationships of myeloid and lymphoid cells: studies with chromosome-marked cells transfused into lethally irradiated mice. Proc R Soc Lond B Biol Sci. 1966 Jul 19;165(998):78–102. doi: 10.1098/rspb.1966.0059. [DOI] [PubMed] [Google Scholar]
  17. ROTHFELS K. H., SIMINOVITCH L. An air-drying technique for flattening chromosomes in mammalian oells grown in vitro. Stain Technol. 1958 Mar;33(2):73–77. doi: 10.3109/10520295809111827. [DOI] [PubMed] [Google Scholar]
  18. TJIO J. H., PUCK T. T. Genetics of somatic mammalian cells. II. Chromosomal constitution of cells in tissue culture. J Exp Med. 1958 Aug 1;108(2):259–268. doi: 10.1084/jem.108.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wu A. M., Till J. E., Siminovitch L., McCulloch E. A. A cytological study of the capacity for differentiation of normal hemopoietic colony-forming cells. J Cell Physiol. 1967 Apr;69(2):177–184. doi: 10.1002/jcp.1040690208. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES