Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1969 Aug 1;130(2):417–442. doi: 10.1084/jem.130.2.417

THE LOSS OF PHENOTYPIC TRAITS BY DIFFERENTIATED CELLS

VI. BEHAVIOR OF THE PROGENY OF A SINGLE CHONDROCYTE

S Chacko 1, J Abbott 1, S Holtzer 1, H Holtzer 1
PMCID: PMC2138686  PMID: 5795101

Abstract

A single, functional, mitotically quiescent chondrocyte may be induced to reenter the mitotic cyde, and produce a progeny of over 1011 cells. Sessile, adherent, polygonal cells deposit matrix, whereas amoeboid, dispersed, flattened fibroblastic cells do not. The prior synthetic history of a cell is of greater importance in determining whether the characteristic chondrogenic phenotype will be expressed, rather than growth in "permissive" or "nonpermissive" medium. Clonal conditions select for stem-like cells, some of whose progeny may become polygonal chondrocytes. The retention of the characteristic chondrogenic phenotype in vitro is favored by pruning the dedifferentiated chondrocytes which arise in these cultures. Dedifferentiated chondrocytes interfere with the deposition and synthesis of chondroitin sulfate by neighboring functional chondrocytes. Possible mechanisms are proposed to explain this type of cell-cell or cell exudate interference. If the progeny of a single, genetically programmed chondrocyte may or may not synthesize chondroitin sulfate, then extragenic sites in the cytoplasm or cell surface must influence the decision as to which cluster of "luxur" molecules the cell will synthesize.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott J., Holtzer H. The loss of phenotypic traits by differentiated cells, V. The effect of 5-bromodeoxyuridine on cloned chondrocytes. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1144–1151. doi: 10.1073/pnas.59.4.1144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abbott J., Holtzer H. The loss of phenotypic traits by differentiated cells. 3. The reversible behavior of chondrocytes in primary cultures. J Cell Biol. 1966 Mar;28(3):473–487. doi: 10.1083/jcb.28.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BEISSON J., SONNEBORN T. M. CYTOPLASMIC INHERITANCE OF THE ORGANIZATION OF THE CELL CORTEX IN PARAMECIUM AURELIA. Proc Natl Acad Sci U S A. 1965 Feb;53:275–282. doi: 10.1073/pnas.53.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BUONASSISI V., SATO G., COHEN A. I. Hormone-producing cultures of adrenal and pituitary tumor origin. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1184–1190. doi: 10.1073/pnas.48.7.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bischoff R., Holtzer H. Mitosis and the processes of differentiation of myogenic cells in vitro. J Cell Biol. 1969 Apr;41(1):188–200. doi: 10.1083/jcb.41.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bryan J. Studies on clonal cartilage strains. I. Effect of contaminant non-cartilage cells. Exp Cell Res. 1968 Oct;52(2):319–326. doi: 10.1016/0014-4827(68)90473-4. [DOI] [PubMed] [Google Scholar]
  7. Buckley I. K., Porter K. R. Cytoplasmic fibrils in living cultured cells. A light and electron microscope study. Protoplasma. 1967;64(4):349–380. doi: 10.1007/BF01666538. [DOI] [PubMed] [Google Scholar]
  8. Chacko S., Holtzer S., Holtzer H. Suppression of chondrogenic expression in mixtures of normal chondrocytes and BUDR-altered chondrocytes grown in vitro. Biochem Biophys Res Commun. 1969 Jan 27;34(2):183–189. doi: 10.1016/0006-291x(69)90629-9. [DOI] [PubMed] [Google Scholar]
  9. Coon H. G., Cahn R. D. Differentiation in vitro: effects of Sephadex fractions of chick embryo extract. Science. 1966 Sep 2;153(3740):1116–1119. doi: 10.1126/science.153.3740.1116. [DOI] [PubMed] [Google Scholar]
  10. Coon H. G. Clonal stability and phenotypic expression of chick cartilage cells in vitro. Proc Natl Acad Sci U S A. 1966 Jan;55(1):66–73. doi: 10.1073/pnas.55.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. EAGLE H., PIEZ K. The population-dependent requirement by cultured mammalian cells for metabolites which they can synthesize. J Exp Med. 1962 Jul 1;116:29–43. doi: 10.1084/jem.116.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eagle H., Levine E. M. Growth regulatory effects of cellular interaction. Nature. 1967 Mar 18;213(5081):1102–1106. doi: 10.1038/2131102a0. [DOI] [PubMed] [Google Scholar]
  13. Fisher H. W., Yeh J. Contact inhibition in colony formation. Science. 1967 Feb 3;155(3762):581–582. doi: 10.1126/science.155.3762.581. [DOI] [PubMed] [Google Scholar]
  14. Goldman R., Kedem O., Katchalski E. Papain--collodion membranes. II. Analysis of the kinetic behavior of enzymes immobilized in artificial membranes. Biochemistry. 1968 Dec;7(12):4518–4532. doi: 10.1021/bi00852a048. [DOI] [PubMed] [Google Scholar]
  15. Gurdon J. B., Woodland H. R. The cytoplasmic control of nuclear activity in animal development. Biol Rev Camb Philos Soc. 1968 May;43(2):233–267. doi: 10.1111/j.1469-185x.1968.tb00960.x. [DOI] [PubMed] [Google Scholar]
  16. HAM R. G. CLONAL GROWTH OF MAMMALIAN CELLS IN A CHEMICALLY DEFINED, SYNTHETIC MEDIUM. Proc Natl Acad Sci U S A. 1965 Feb;53:288–293. doi: 10.1073/pnas.53.2.288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. HOLTZER H. CONTROL OF CHONDROGENESIS IN THE EMBRYO. Biophys J. 1964 Jan;4:SUPPL239–SUPPL255. doi: 10.1016/s0006-3495(64)86941-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hauschka S. D., Konigsberg I. R. The influence of collagen on the development of muscle clones. Proc Natl Acad Sci U S A. 1966 Jan;55(1):119–126. doi: 10.1073/pnas.55.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Holtzer H., Abbott J., Lash J., Holtzer S. THE LOSS OF PHENOTYPIC TRAITS BY DIFFERENTIATED CELLS IN VITRO, I. DEDIFFERENTIATION OF CARTILAGE CELLS. Proc Natl Acad Sci U S A. 1960 Dec;46(12):1533–1542. doi: 10.1073/pnas.46.12.1533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. KURODA Y. STUDIES ON CARTILAGE CELLS IN VITRO. I. MORPHOLOGY AND GROWTH OF CARTILAGE CELLS IN MONOLAYER CULTURES. Exp Cell Res. 1964 Jul;35:326–336. doi: 10.1016/0014-4827(64)90099-0. [DOI] [PubMed] [Google Scholar]
  21. LEVINE E. M., BECKER Y., BOONE C. W., EAGLE H. CONTACT INHIBITION, MACROMOLECULAR SYNTHESIS, AND POLYRIBOSOMES IN CULTURED HUMAN DIPLOID FIBROBLASTS. Proc Natl Acad Sci U S A. 1965 Feb;53:350–356. doi: 10.1073/pnas.53.2.350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Manning W. K., Bonner W. M., Jr Isolation and culture of chondrocytes from human adult articular cartilage. Arthritis Rheum. 1967 Jun;10(3):235–239. doi: 10.1002/art.1780100309. [DOI] [PubMed] [Google Scholar]
  23. Nameroff M., Holtzer H. The loss of phenotypic traits by differentiated cells. IV. Changes in polysaccharides produced by dividing chondrocytes. Dev Biol. 1967 Sep;16(3):250–281. doi: 10.1016/0012-1606(67)90026-7. [DOI] [PubMed] [Google Scholar]
  24. Okazaki K., Holtzer H. An analysis of myogenesis in vitro using fluorescein-labeled antimyosin. J Histochem Cytochem. 1965 Nov-Dec;13(8):726–739. doi: 10.1177/13.8.726. [DOI] [PubMed] [Google Scholar]
  25. Okazaki K., Holtzer H. Myogenesis: fusion, myosin synthesis, and the mitotic cycle. Proc Natl Acad Sci U S A. 1966 Nov;56(5):1484–1490. doi: 10.1073/pnas.56.5.1484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. ROSENBERG M. D. Long-range interactions between cell and substratum. Proc Natl Acad Sci U S A. 1962 Aug;48:1342–1349. doi: 10.1073/pnas.48.8.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. ROSENBERG M. D. Microexudates from cells grown in tissue culture. Biophys J. 1960 Nov;1:137–159. doi: 10.1016/s0006-3495(60)86881-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Richardson U. I., Tashjian A. H., Jr, Levine L. Establishment of a clonal strain of hepatoma cells which secrete albumin. J Cell Biol. 1969 Jan;40(1):236–247. doi: 10.1083/jcb.40.1.236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rose G. G., Kumegawa M., Cattoni M. The circumfusion system for multipurposeculture chambers. II. The protracted maintenance of differentiation of fetal and newborn mouse liver in vitro. J Cell Biol. 1968 Nov;39(2):430–450. doi: 10.1083/jcb.39.2.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rubin H., Hatié C. Increase in the size of chick embryo cells upon cultivation in serum-containing medium. Dev Biol. 1968 May;17(5):603–616. doi: 10.1016/0012-1606(68)90008-0. [DOI] [PubMed] [Google Scholar]
  31. SANFORD K. K., EARLE W. R., LIKELY G. D. The growth in vitro of single isolated tissue cells. J Natl Cancer Inst. 1948 Dec;9(3):229–246. [PubMed] [Google Scholar]
  32. Shulman H. J., Meyer K. Cellular differentiation and the aging process in cartilaginous tissues. Mucopolysaccharide synthesis in cell cultures of chondrocytes. J Exp Med. 1968 Dec 1;128(6):1353–1362. doi: 10.1084/jem.128.6.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Todaro G. J., Lazar G. K., Green H. The initiation of cell division in a contact-inhibited mammalian cell line. J Cell Physiol. 1965 Dec;66(3):325–333. doi: 10.1002/jcp.1030660310. [DOI] [PubMed] [Google Scholar]
  34. WEISS P. Perspectives in the field of morphogenesis. Q Rev Biol. 1950 Jun;25(2):177–198. doi: 10.1086/397540. [DOI] [PubMed] [Google Scholar]
  35. Waymouth C. Somatic cells in vitro: their relationship to progenitive cells and to artificial milieux. Natl Cancer Inst Monogr. 1967 Sep;26:1–21. [PubMed] [Google Scholar]
  36. Yasumura Y., Buonassisi V., Sato G. Clonal analysis of differentiated function in animal cell cultures. I. Possible correlated maintenance of differentiated function and the diploid karyotype. Cancer Res. 1966 Mar;26(3):529–535. [PubMed] [Google Scholar]
  37. Yasumura Y. Retention of differentiated function in clonal animal cell lines, particularly hormone-secreting cultures. Am Zool. 1968 May;8(2):285–305. doi: 10.1093/icb/8.2.285. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES