Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1969 Nov 30;130(6):1243–1261. doi: 10.1084/jem.130.6.1243

DISTINCT EVENTS IN THE IMMUNE RESPONSE ELICITED BY TRANSFERRED MARROW AND THYMUS CELLS

I. ANTIGEN REQUIREMENTS AND PROLIFERATION OF THYMIC ANTIGEN-REACTIVE CELLS

G M Shearer 1, G Cudkowicz 1
PMCID: PMC2138694  PMID: 4187524

Abstract

Marrow cells and thymocytes of unprimed donor mice were transplanted separately into X-irradiated syngeneic hosts, with or without sheep erythrocytes (SRBC). Antigen-dependent changes in number or function of potentially immunocompetent cells were assessed by retransplantation of thymus-derived cells with fresh bone marrow cells and SRBC; of marrow-derived cells with fresh thymocytes and SRBC; and of thymus-derived with marrow-derived cells and SRBC. Plaque-forming cells (PFC) of the direct (IgM) and indirect (IgG) classes were enumerated in spleens of secondary host mice at the time of peak responses. By using this two-step design, it was shown (a) that thymus, but not bone marrow, contained antigen-reactive cells (ARC) capable of initiating the immune response to SRBC (first step), and (b) that the same antigen complex that activated thymic ARC was required for the subsequent interaction between thymus-derived and marrow cells and/or for PFC production (second step). Thymic ARC separated from marrow cells but exposed to SRBC proliferated and generated specific inducer cells. These were the cells that interacted with marrow precursors of PFC to form the elementary units for plaque responses to SRBC, i.e. the class- and specificity-restricted antigen-sensitive units. It was estimated that each ARC generated 80–800 inducer cells in 4 days by way of a minimum of 6–10 cell divisions. On the basis of the available evidence, a simple model was outlined for cellular events in the immune response to SRBC.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bosma M. J., Perkins E. H., Makinodan T. Further characterization of the lymphoid cell transfer system for the study of antigen-sensitive progenitor cells. J Immunol. 1968 Nov;101(5):963–972. [PubMed] [Google Scholar]
  2. Cheng V., Trentin J. J. Enteric bacteria as a possible cause of hemolytic antibody-forming cells in normal mouse spleens. Proc Soc Exp Biol Med. 1967 Nov;126(2):467–470. doi: 10.3181/00379727-126-32479. [DOI] [PubMed] [Google Scholar]
  3. Claman H. N., Chaperon E. A., Triplett R. F. Immunocompetence of transferred thymus-marrow cell combinations. J Immunol. 1966 Dec;97(6):828–832. [PubMed] [Google Scholar]
  4. Cudkowicz G., Shearer G. M., Priore R. L. Cellular differentiation of the immune system of mice. V. Class differentiation in marrow precursors of plaque-forming cells. J Exp Med. 1969 Sep 1;130(3):481–491. doi: 10.1084/jem.130.3.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davies A. J., Leuchars E., Wallis V., Koller P. C. The mitotic response of thymus-derived cells to antigenic stimulus. Transplantation. 1966 Jul;4(4):438–451. doi: 10.1097/00007890-196607000-00008. [DOI] [PubMed] [Google Scholar]
  6. Gregory C. J., Lajtha L. G. Kinetic study of the production of antibody-forming cells from their precursors. Nature. 1968 Jun 15;218(5146):1079–1081. doi: 10.1038/2181079a0. [DOI] [PubMed] [Google Scholar]
  7. Kennedy J. C., Till J. E., Siminovitch L., McCulloch E. A. The proliferative capacity of antigen-sensitive precursors of hemolytic plaque-forming cells. J Immunol. 1966 Jun;96(6):973–980. [PubMed] [Google Scholar]
  8. Krüsmann W. F., Kasemir H., Fisher H. Thymus dependent mesothelial proliferation after antigenic stimulation. Nature. 1969 Jun 21;222(5199):1195–1196. doi: 10.1038/2221195a0. [DOI] [PubMed] [Google Scholar]
  9. Laskov R. Rosette forming cells in non-immunized mice. Nature. 1968 Aug 31;219(5157):973–975. doi: 10.1038/219973a0. [DOI] [PubMed] [Google Scholar]
  10. Miller J. F., Mitchell G. F. The thymus and the precursors of antigen reactive cells. Nature. 1967 Nov 18;216(5116):659–663. doi: 10.1038/216659a0. [DOI] [PubMed] [Google Scholar]
  11. Mishell R. I., Dutton R. W. Immunization of dissociated spleen cell cultures from normal mice. J Exp Med. 1967 Sep 1;126(3):423–442. doi: 10.1084/jem.126.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mitchell G. F., Miller J. F. Cell to cell interaction in the immune response. II. The source of hemolysin-forming cells in irradiated mice given bone marrow and thymus or thoracic duct lymphocytes. J Exp Med. 1968 Oct 1;128(4):821–837. doi: 10.1084/jem.128.4.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mitchell G. F., Miller J. F. Immunological activity of thymus and thoracic-duct lymphocytes. Proc Natl Acad Sci U S A. 1968 Jan;59(1):296–303. doi: 10.1073/pnas.59.1.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Morton J. I., Siegel B. V. Response of NZB mice to foreign antigen and development of autoimmune disease. J Reticuloendothel Soc. 1969 Feb;6(1):78–93. [PubMed] [Google Scholar]
  15. Mosier D. E., Coppleson L. W. A THREE-CELL INTERACTION REQUIRED FOR THE INDUCTION OF THE PRIMARY IMMUNE RESPONSE in vitro. Proc Natl Acad Sci U S A. 1968 Oct;61(2):542–547. doi: 10.1073/pnas.61.2.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nossal G. J., Cunningham A., Mitchell G. F., Miller J. F. Cell to cell interaction in the immune response. 3. Chromosomal marker analysis of single antibody-forming cells in reconstituted, irradiated, or thymectomized mice. J Exp Med. 1968 Oct 1;128(4):839–853. doi: 10.1084/jem.128.4.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Osoba D. Restriction of the capacity to respond to two antigens by single precursors of antibody-producing cells in culture. J Exp Med. 1969 Jan 1;129(1):141–152. doi: 10.1084/jem.129.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Osoba D. Thymic control of cellular differentiation in the immunological system. Proc Soc Exp Biol Med. 1968 Feb;127(2):418–420. doi: 10.3181/00379727-127-32705. [DOI] [PubMed] [Google Scholar]
  19. Playfair J. H., Papermaster B. W., Cole L. J. Focal antibody production by transferred spleen cells in irradiated mice. Science. 1965 Aug 27;149(3687):998–1000. doi: 10.1126/science.149.3687.998. [DOI] [PubMed] [Google Scholar]
  20. Playfair J. H. Strain differences in the immune response of mice. I. The neonatal response to sheep red cells. Immunology. 1968 Jul;15(1):35–50. [PMC free article] [PubMed] [Google Scholar]
  21. Playfair J. H. Strain differences in the immune response of mice. II. Responses by neonatal cells in irradiated adult hosts. Immunology. 1968 Dec;15(6):815–826. [PMC free article] [PubMed] [Google Scholar]
  22. Radovich J., Hemingsen H., Talmage D. W. The enhancing effect of bone marrow cells on the immune response of irradiated mice reconstituted with spleen cells from normal and immunized donors. J Immunol. 1968 Apr;100(4):756–759. [PubMed] [Google Scholar]
  23. Rajewsky K., Schirrmacher V., Nase S., Jerne N. K. The requirement of more than one antigenic determinant for immunogenicity. J Exp Med. 1969 Jun 1;129(6):1131–1143. doi: 10.1084/jem.129.6.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shearer G. M., Cudkowicz G. Cellular differentiation of the immune system of mice. 3. Separate antigen-sensitive units for different types of anti-sheep immunocytes formed by marrow-thymus cell mixtures. J Exp Med. 1969 May 1;129(5):935–951. doi: 10.1084/jem.129.5.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shearer G. M., Cudkowicz G., Connell M. S., Priore R. L. Cellular differentiation of the immune system of mice. I. Separate splenic antigen-sensitive units for different types of anti-sheep antibody-forming cells. J Exp Med. 1968 Sep 1;128(3):437–457. doi: 10.1084/jem.128.3.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shearer G. M., Cudkowicz G., Priore R. L. Cellular differentiation of the immune system of mice. II. Frequency of unipotent splenic antigen-sensitive units after immunization with sheep erythrocytes. J Exp Med. 1969 Jan 1;129(1):185–199. doi: 10.1084/jem.129.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shearer G. M., Cudkowicz G., Priore R. L. Cellular differentiation of the immune system of mice. IV. Lack of class differentiation in thymic antigen-reactive cells. J Exp Med. 1969 Sep 1;130(3):467–480. doi: 10.1084/jem.130.3.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Syeklocha D., Siminovitch L., Till J. E., McCulloch E. A. The proliferative state of antigen-sensitive precursors of hemolysin-producing cells, determined by the use of the inhibitor, vinblastine. J Immunol. 1966 Mar;96(3):472–477. [PubMed] [Google Scholar]
  29. Taylor R. B. Immune paralysis of thymus cells by bovine serum albumin. Nature. 1968 Nov 9;220(5167):611–611. doi: 10.1038/220611a0. [DOI] [PubMed] [Google Scholar]
  30. Valeriote F. A., Bruce W. R., Meeker B. E. A model for the action of vinblastine in vivo. Biophys J. 1966 Mar;6(2):145–152. doi: 10.1016/S0006-3495(66)86646-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES