Abstract
Marrow cells and thymocytes of unprimed donor mice were mixed in vitro and transplanted into X-irradiated syngeneic hosts. 18 hr later sheep erythrocytes were injected to induce immune responses. Splenic plaque-forming cells (PFC) secreting IgM (direct PFC) or IgG (indirect PFC) hemolytic antibody were enumerated at the time of peak responses. By transplanting graded and limiting numbers of marrow cells with 5 x 107 thymocytes, inocula were found that contained few precursors of PFC (P-PFC) reaching the recipient spleens, interacting with thymocytes, and generating PFC. However, the frequency of responses in relation to the number of grafted marrow cells did not follow Poisson statistics, presumably because the interaction of marrow cells with thymocytes was more complex than a single or a one-to-one cell event. The frequency of direct PFC responses was greater than that of indirect PFC responses in 13 of 15 groups of mice tested. This was interpreted as evidence for the existence of two classes of P-PFC, each of which was restricted to generate either direct or indirect PFC. The precursors of direct PFC were ∼ 15 times more frequent than those of indirect PFC. Since thymic antigen-reactive cells were not differentiated for antibody class, it follows that antigen-sensitive units reactive to sheep erythrocytes owe their class restriction to specialized marrow cells. Specialization of P-PFC may have arisen within marrow cell lines by differentiation, or may have been conferred upon P-PFC by interaction with other cells, including those of the irradiated host.
Full Text
The Full Text of this article is available as a PDF (609.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armstrong W. D., Diener E., Shellam G. R. Antigen-reactive cells in normal, immunized, and tolerant mice. J Exp Med. 1969 Feb 1;129(2):393–410. doi: 10.1084/jem.129.2.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown R. A., Makinodan T., Albright J. F. Significance of a single-hit event in the initiation of antibody response. Nature. 1966 Jun 25;210(5043):1383–1384. doi: 10.1038/2101383a0. [DOI] [PubMed] [Google Scholar]
- HERZENBERG L. A., COLE L. J. PRESENCE OF DONOR SPECIFIC GAMMA-GLOBULINS IN SERA OF ALLOGENEIC MOUSE RADIATION CHIMERAS. Nature. 1964 Apr 25;202:352–353. doi: 10.1038/202352a0. [DOI] [PubMed] [Google Scholar]
- Mitchell G. F., Miller J. F. Cell to cell interaction in the immune response. II. The source of hemolysin-forming cells in irradiated mice given bone marrow and thymus or thoracic duct lymphocytes. J Exp Med. 1968 Oct 1;128(4):821–837. doi: 10.1084/jem.128.4.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell G. F., Miller J. F. Immunological activity of thymus and thoracic-duct lymphocytes. Proc Natl Acad Sci U S A. 1968 Jan;59(1):296–303. doi: 10.1073/pnas.59.1.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mosier D. E., Coppleson L. W. A THREE-CELL INTERACTION REQUIRED FOR THE INDUCTION OF THE PRIMARY IMMUNE RESPONSE in vitro. Proc Natl Acad Sci U S A. 1968 Oct;61(2):542–547. doi: 10.1073/pnas.61.2.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nossal G. J., Cunningham A., Mitchell G. F., Miller J. F. Cell to cell interaction in the immune response. 3. Chromosomal marker analysis of single antibody-forming cells in reconstituted, irradiated, or thymectomized mice. J Exp Med. 1968 Oct 1;128(4):839–853. doi: 10.1084/jem.128.4.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raidt D. J., Mishell R. I., Dutton R. W. Cellular events in the immune response : analysis and in vitro response of mouse spleen cell populations separated by differential flotation in albumin gradients. J Exp Med. 1968 Oct 1;128(4):681–698. doi: 10.1084/jem.128.4.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shearer G. M., Cudkowicz G. Cellular differentiation of the immune system of mice. 3. Separate antigen-sensitive units for different types of anti-sheep immunocytes formed by marrow-thymus cell mixtures. J Exp Med. 1969 May 1;129(5):935–951. doi: 10.1084/jem.129.5.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shearer G. M., Cudkowicz G., Connell M. S., Priore R. L. Cellular differentiation of the immune system of mice. I. Separate splenic antigen-sensitive units for different types of anti-sheep antibody-forming cells. J Exp Med. 1968 Sep 1;128(3):437–457. doi: 10.1084/jem.128.3.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shearer G. M., Cudkowicz G., Priore R. L. Cellular differentiation of the immune system of mice. II. Frequency of unipotent splenic antigen-sensitive units after immunization with sheep erythrocytes. J Exp Med. 1969 Jan 1;129(1):185–199. doi: 10.1084/jem.129.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shearer G. M., Cudkowicz G., Priore R. L. Cellular differentiation of the immune system of mice. IV. Lack of class differentiation in thymic antigen-reactive cells. J Exp Med. 1969 Sep 1;130(3):467–480. doi: 10.1084/jem.130.3.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor R. B. Immune paralysis of thymus cells by bovine serum albumin. Nature. 1968 Nov 9;220(5167):611–611. doi: 10.1038/220611a0. [DOI] [PubMed] [Google Scholar]
- Tyan M. L., Herzenberg L. A. Studies on the ontogeny of the mouse immune system. II. Immunoglobulin-producing cells. J Immunol. 1968 Sep;101(3):446–450. [PubMed] [Google Scholar]
- Weiler E., Weiler I. J. Unequal association of mouse allotypes with antibodies of different specificities. Studies with a plaque assay procedure employing poly-D- and poly-L-alanine as haptenes. J Immunol. 1968 Nov;101(5):1044–1058. [PubMed] [Google Scholar]