Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1970 Mar 31;131(4):643–657. doi: 10.1084/jem.131.4.643

REACTIVE LYSIS: THE COMPLEMENT-MEDIATED LYSIS OF UNSENSITIZED CELLS

II. THE CHARACTERIZATION OF ACTIVATED REACTOR AS C56 AND THE PARTICIPATION OF C8 AND C9

P J Lachmann 1, R A Thompson 1
PMCID: PMC2138770  PMID: 4193935

Abstract

It has been shown that the "activated reactor" that is produced in certain human sera by complement activation is a stable complex of the fifth and sixth component of complement (C56). On interaction with C7, the indicator factor, a complex C567 is formed which for a short time (half-life less than 1 min) has an activated binding site and can attach itself to normal red cell membranes, conferring on them the hemolytic properties of the "heat stable" complement intermediate EC 1 ∼ 7, the capacity to be lysed by C8 and C9. These cells have neither antibody nor the complement components up to C3 bound on them. The binding site—activated C567c—can similarly bind to other hydrophobic surfaces, including agarose gel where it forms a "stainable line". If the complex is not bound to a surface, the binding site decays and the resulting complex will no longer give rise to lysis. However it will still inactivate C8 and C9 in solution. The sera that can generate activated reactor apparently do so because they have an excess of C5 and C6, compared to their content of C7. The phenomenon of reactive lysis thus represents complement-mediated lysis of unsensitized cells initiated at the C5 stage by a stable complex (C56) which was generated by complement activation at a distance. The immunochemistry of the phenomenon is described and some of its implications discussed.

Full Text

The Full Text of this article is available as a PDF (706.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLISON A. C., HUMPHREY J. H. A theoretical and experimental analysis of double diffusion precipitin reactions in gels, and its application to characterization of antigens. Immunology. 1960 Jan;3:95–106. [PMC free article] [PubMed] [Google Scholar]
  2. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hadding U., Müller-Eberhard H. J. Complement: substitution of the terminal component in immune hemolysis by 1,10-phenanthroline. Science. 1967 Jul 28;157(3787):442–443. doi: 10.1126/science.157.3787.442. [DOI] [PubMed] [Google Scholar]
  4. Lachmann P. J., Thomson R. A. Immunoconglutinins in human saliva--a group of unusual IgA antibodies. Immunology. 1970 Feb;18(2):157–169. [PMC free article] [PubMed] [Google Scholar]
  5. Muller-Eberhard H. J., Nilsson U. R., Dalmasso A. P., Polley M. J., Calcott M. A. A molecular concept of immune cytolysis. Arch Pathol. 1966 Sep;82(3):205–217. [PubMed] [Google Scholar]
  6. Nilsson U. R., Müller-Eberhard H. J. Studies on the mode of action of the fifth, sixth and seventh component of human complement in immune haemolysis. Immunology. 1967 Jul;13(1):101–117. [PMC free article] [PubMed] [Google Scholar]
  7. Thompson R. A., Lachmann P. J. Reactive lysis: the complement-mediated lysis of unsensitized cells. I. The characterization of the indicator factor and its identification as C7. J Exp Med. 1970 Apr 1;131(4):629–641. doi: 10.1084/jem.131.4.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Thompson R. A., Rowe D. S. Reactive haemolysis--a distinctive form of red cell lysis. Immunology. 1968 May;14(5):745–762. [PMC free article] [PubMed] [Google Scholar]
  9. Ward P. A., Cochrane C. G., Muller-Eberhard H. J. Further studies on the chemotactic factor of complement and its formation in vivo. Immunology. 1966 Aug;11(2):141–153. [PMC free article] [PubMed] [Google Scholar]
  10. YACHNIN S. THE HEMOLYSIS OF RED CELLS FROM PATIENTS WITH PAROXYSMAL NOCTURNAL HEMOGLOBINURIA BY PARTIALLY PURIFIED SUB-COMPONENTS OF THE THIRD COMPLEMENT COMPONENT. J Clin Invest. 1965 Sep;44:1534–1546. doi: 10.1172/JCI105260. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES