Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1970 Mar 31;131(4):675–699. doi: 10.1084/jem.131.4.675

CELL TO CELL INTERACTION IN THE IMMUNE RESPONSE

V. TARGET CELLS FOR TOLERANCE INDUCTION

J F A P Miller 1, G F Mitchell 1
PMCID: PMC2138778  PMID: 5464380

Abstract

Collaboration between thymus-derived lymphocytes, and nonthymus-derived antibody-forming cell precursors occurs during the immune response of mice to sheep erythrocytes (SRBC). The aim of the experiments reported here was to attempt to induce tolerance in each of the two cell populations to determine which cell type dictates the specificity of the response. Adult mice were rendered specifically tolerant to SRBC by treatment with one large dose of SRBC followed by cyclophosphamide. Attempts to restore to normal their anti-SRBC response by injecting lymphoid cells from various sources were unsuccessful. A slight increase in the response was, however, obtained in recipients of thymus or thoracic duct lymphocytes and a more substantial increase in recipients of spleen cells or of a mixture of thymus or thoracic duct cells and normal marrow or spleen cells from thymectomized donors. Thymus cells from tolerant mice were as effective as thymus cells from normal or cyclophosphamide-treated controls in enabling neonatally thymectomized recipients to respond to SRBC and in collaborating with normal marrow cells to allow a response to SRBC in irradiated mice. Tolerance was thus not achieved at the level of thelymphocyte population within the thymus, perhaps because of insufficient penetration of the thymus by the antigens concerned. By contrast, thoracic duct lymphocytes from tolerant mice failed to restore to normal the response of neonatally thymectomized recipients to SRBC. Tolerance is thus a property that can be linked specifically to thymus-derived cells as they exist in the mobile pool of recirculating lymphocytes outside the thymus. Thymus-derived cells are thus considered capable of recognizing and specifically reacting with antigenic determinants. Marrow cells from tolerant mice were as effective as marrow cells from cyclophosphamide-treated or normal controls in collaborating with normal thymus cells to allow a response to SRBC in irradiated recipients. When a mixture of thymus or thoracic duct cells and lymph node cells was given to irradiated mice, the response to SRBC was essentially the same whether the lymph node cells were derived from tolerant donors or from thymectomized irradiated, marrow-protected donors. Attempts to induce tolerance to SRBC in adult thymectomized, irradiated mice 3–4 wk after marrow protection, by treatment with SRBC and cyclophosphamide, were unsuccessful: after injection of thoracic duct cells, a vigorous response to SRBC occurred. The magnitude of the response was the same whether or not thymus cells had been given prior to the tolerization regime. The various experimental designs have thus failed to demonstrate specific tolerance in the nonthymus-derived lymphocyte population. Several alternative possibilities were discussed. Perhaps such a population does not contain cells capable of dictating the specificity of the response. This was considered unlikely. Alternatively, tolerance may have been achieved but soon masked by a rapid, thymus-independent, differentiation of marrow-derived lymphoid stem cells. On the other hand, tolerance may not have occurred simply because the induction of tolerance, like the induction of antibody formation, requires the collaboration of thymus-derived cells. Finally, tolerance in the nonthymus-derived cell population may never be achieved because the SRBC-cyclophosphamide regime specifically eliminates thymus-derived cells leaving the antibody-forming cell precursors intact but unable to react with antigen as there are no thymus-derived cells with which to interact.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aisenberg A. C., Davis C. The thymus and recovery from cyclophosphamide-induced tolerance to sheep erythrocytes. J Exp Med. 1968 Jul 1;128(1):35–46. doi: 10.1084/jem.128.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CROSS A. M., LEUCHARS E., MILLER J. F. STUDIES ON THE RECOVERY OF THE IMMUNE RESPONSE IN IRRADIATED MICE THYMECTOMIZED IN ADULT LIFE. J Exp Med. 1964 May 1;119:837–850. doi: 10.1084/jem.119.5.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Claman H. N., Chaperon E. A. Immunologic complementation between thymus and marrow cells--a model for the two-cell theory of immunocompetence. Transplant Rev. 1969;1:92–113. doi: 10.1111/j.1600-065x.1969.tb00137.x. [DOI] [PubMed] [Google Scholar]
  4. Claman H. N., Chaperon E. A., Triplett R. F. Thymus-marrow cell combinations. Synergism in antibody production. Proc Soc Exp Biol Med. 1966 Aug-Sep;122(4):1167–1171. doi: 10.3181/00379727-122-31353. [DOI] [PubMed] [Google Scholar]
  5. Cunningham A. J., Szenberg A. Further improvements in the plaque technique for detecting single antibody-forming cells. Immunology. 1968 Apr;14(4):599–600. [PMC free article] [PubMed] [Google Scholar]
  6. DULBECCO R., VOGT M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med. 1954 Feb;99(2):167–182. doi: 10.1084/jem.99.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. David J. R. Macrophage migration. Fed Proc. 1968 Jan-Feb;27(1):6–12. [PubMed] [Google Scholar]
  8. Davies A. J. The thymus and the cellular basis of immunity. Transplant Rev. 1969;1:43–91. doi: 10.1111/j.1600-065x.1969.tb00136.x. [DOI] [PubMed] [Google Scholar]
  9. Dietrich F. M., Dukor P. The immune response to heterologous red cells in mice. 3. Cyclophosphamide-induced tolerance to multispecies rd cells. Pathol Microbiol (Basel) 1967;30(6):909–917. doi: 10.1159/000161757. [DOI] [PubMed] [Google Scholar]
  10. KERN M., EISEN H. N. The effect of antigenic stimulation on incorporation of phosphate and methionine into proteins of isolated lymph node cells. J Exp Med. 1959 Aug 1;110(2):207–219. doi: 10.1084/jem.110.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MILLER J. F. Studies on mouse leukaemia. The role of the thymus in leukaemogenesis by cell-free leukaemic filtrates. Br J Cancer. 1960 Mar;14:93–98. doi: 10.1038/bjc.1960.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mackaness G. B. The influence of immunologically committed lymphoid cells on macrophage activity in vivo. J Exp Med. 1969 May 1;129(5):973–992. doi: 10.1084/jem.129.5.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Miller J. F., Mitchell G. F. Cell to cell interaction in the immune response. I. Hemolysin-forming cells in neonatally thymectomized mice reconstituted with thymus or thoracic duct lymphocytes. J Exp Med. 1968 Oct 1;128(4):801–820. doi: 10.1084/jem.128.4.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miller J. F., Mitchell G. F. Cell to cell interaction in the immune response. Transplant Proc. 1969 Mar;1(1):535–538. [PubMed] [Google Scholar]
  15. Miller J. F., Mitchell G. F. Thymus and antigen-reactive cells. Transplant Rev. 1969;1:3–42. doi: 10.1111/j.1600-065x.1969.tb00135.x. [DOI] [PubMed] [Google Scholar]
  16. Mitchell G. F., Miller J. F. Cell to cell interaction in the immune response. II. The source of hemolysin-forming cells in irradiated mice given bone marrow and thymus or thoracic duct lymphocytes. J Exp Med. 1968 Oct 1;128(4):821–837. doi: 10.1084/jem.128.4.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mitchell G. F., Miller J. F. Immunological activity of thymus and thoracic-duct lymphocytes. Proc Natl Acad Sci U S A. 1968 Jan;59(1):296–303. doi: 10.1073/pnas.59.1.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nossal G. J., Cunningham A., Mitchell G. F., Miller J. F. Cell to cell interaction in the immune response. 3. Chromosomal marker analysis of single antibody-forming cells in reconstituted, irradiated, or thymectomized mice. J Exp Med. 1968 Oct 1;128(4):839–853. doi: 10.1084/jem.128.4.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Playfair J. H. Specific tolerance to sheep erythrocytes in mouse bone marrow cells. Nature. 1969 May 31;222(5196):882–883. doi: 10.1038/222882a0. [DOI] [PubMed] [Google Scholar]
  20. Radovich J., Talmage D. W. Antigenic competition: cellular or humoral. Science. 1967 Oct 27;158(3800):512–514. doi: 10.1126/science.158.3800.512. [DOI] [PubMed] [Google Scholar]
  21. Rajewsky K., Schirrmacher V., Nase S., Jerne N. K. The requirement of more than one antigenic determinant for immunogenicity. J Exp Med. 1969 Jun 1;129(6):1131–1143. doi: 10.1084/jem.129.6.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sulitzeanu D. Affinity of antigen for white cells and its relation to the induction of antibody formation. Bacteriol Rev. 1968 Dec;32(4 Pt 2):404–424. [PMC free article] [PubMed] [Google Scholar]
  23. Taylor R. B. Cellular cooperation in the antibody response of mice to two serum albumins: specific function of thymus cells. Transplant Rev. 1969;1:114–149. doi: 10.1111/j.1600-065x.1969.tb00138.x. [DOI] [PubMed] [Google Scholar]
  24. Waksman B. H., Isakovic K., Smith S. B. The thymus and the tolerance function. Ann N Y Acad Sci. 1966 Jan 26;135(1):479–484. doi: 10.1111/j.1749-6632.1966.tb45495.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES